메뉴 건너뛰기




Volumn 19, Issue 18, 2014, Pages 1-6

A step-by-step guide to propensity score matching in R

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84930397707     PISSN: None     EISSN: 15317714     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (177)

References (14)
  • 1
    • 84897940111 scopus 로고    scopus 로고
    • Educational research with real-world data: Reducing selection bias with propensity score analysis
    • Adelson, J. L. (2013). Educational research with real-world data: Reducing selection bias with propensity score analysis. Practical Assessment Research & Evaluation, 18(15). Retrieved from http://pareonline.net/getvn.asp?v=18&n=15
    • (2013) Practical Assessment Research & Evaluation , vol.18 , Issue.15
    • Adelson, J.L.1
  • 2
    • 84930406623 scopus 로고    scopus 로고
    • The relationship between Schools to Watch © designation and academic achievement: A study of Colorado
    • New York, Ohio, and Virginia (Doctoral dissertation) Available from Proquest Dissertations and Theses database. (UMI No. 3581272)
    • Falbe, K. (2014). The relationship between Schools to Watch © designation and academic achievement: A study of Colorado, New York, Ohio, and Virginia (Doctoral dissertation). Available from Proquest Dissertations and Theses database. (UMI No. 3581272)
    • (2014)
    • Falbe, K.1
  • 3
    • 34249885738 scopus 로고    scopus 로고
    • MatchIt: Nonparametric preprocessing for parametric causal inference
    • Ho, D., Kosuke, I., King, G., & Stuart, E. (2007a). MatchIt: Nonparametric preprocessing for parametric causal inference. Political Analysis, 15(3), 199-236.
    • (2007) Political Analysis , vol.15 , Issue.3 , pp. 199-236
    • Ho, D.1    Kosuke, I.2    King, G.3    Stuart, E.4
  • 4
    • 84930405489 scopus 로고    scopus 로고
    • Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
    • Ho, D., Kosuke, I., King, G., & Stuart, E. (2007b). Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Journal of Statistical Software. Retrieved from http://gking.harvard.edu/matchit/
    • (2007) Journal of Statistical Software
    • Ho, D.1    Kosuke, I.2    King, G.3    Stuart, E.4
  • 5
    • 84861142375 scopus 로고    scopus 로고
    • MatchIt: Nonparametric preprocessing for parametric causa inference [software documentation]
    • Ho, D., Kosuke, I. King, G., & Stuart, E. (2011). MatchIt: Nonparametric preprocessing for parametric causa inference [software documentation]. Retrieved from http://gking.harvard.edu/matchit
    • (2011)
    • Ho, D.1    Kosuke, I.2    King, G.3    Stuart, E.4
  • 6
    • 84861142375 scopus 로고    scopus 로고
    • MatchIt: Nonparametric preprocessing for parametric causal inference [software]
    • Ho, D., Kosuke, I., King, G., & Stuart, E. (2013). MatchIt: Nonparametric preprocessing for parametric causal inference [software]. Retrived from http://gking.harvard.edu/matchit
    • (2013)
    • Ho, D.1    Kosuke, I.2    King, G.3    Stuart, E.4
  • 8
    • 84930403935 scopus 로고    scopus 로고
    • New York educational data set example before matching
    • Randolph, J. J. (2014a). New York educational data set example before matching. Retrieved from http://justusrandolph.net/psm/newyork.csv
    • (2014)
    • Randolph, J.J.1
  • 9
    • 84930403935 scopus 로고    scopus 로고
    • New York educational data set example after matching
    • Randolph, J. J. (2014b). New York educational data set example after matching. Retrieved from http://justusrandolph.net/psm/newyork_nearest100.c sv
    • (2014)
    • Randolph, J.J.1
  • 10
    • 84863304598 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing. (3.0.3) [Computer software]
    • R Core Team (2014). R: A language and environment for statistical computing. (3.0.3) [Computer software]. Vienna, Austria: Foundation for Statistical Computing. Retrieved from http://www.R-project.org/.
    • (2014)
  • 11
    • 14944344423 scopus 로고    scopus 로고
    • Causal inference using potential outcomes: Design, modeling, decisions
    • Rubin D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100(496), 322-331.
    • (2005) Journal of the American Statistical Association , vol.100 , Issue.496 , pp. 322-331
    • Rubin, D.B.1
  • 12
    • 50249111771 scopus 로고    scopus 로고
    • Consider propensity scores to compare treatments
    • Rudner, L. M., & Peyton, J. (2006). Consider propensity scores to compare treatments. Practical Assessment Research & Evaluation, 11(9). Retrieved from: http://pareonline.net/getvn.asp?v=11&n=9
    • (2006) Practical Assessment Research & Evaluation , vol.11 , Issue.9
    • Rudner, L.M.1    Peyton, J.2
  • 14
    • 84887584557 scopus 로고    scopus 로고
    • Comparing propensity score methods in balancing covariates and recovering impact in small sample educational program evaluations
    • Stone, C. A. & Tang, Y. (2013). Comparing propensity score methods in balancing covariates and recovering impact in small sample educational program evaluations. Practical Assessment, Research & Evaluation, 18(13). Retrieved from: http://pareonline.net/getvn.asp?v=18&n=13
    • (2013) Practical Assessment, Research & Evaluation , vol.18 , Issue.13
    • Stone, C.A.1    Tang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.