메뉴 건너뛰기




Volumn 34, Issue 16, 2015, Pages 2381-2390

Intention-to-treat analysis with treatment discontinuation and missing data in clinical trials

Author keywords

Clinical trials; Dropouts; Incomplete data; Intention to treat analysis; Missing data; Treatment discontinuation

Indexed keywords

HEMOGLOBIN A1C; INSULIN GLARGINE; ANTIDIABETIC AGENT; INSULIN;

EID: 84930393282     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6352     Document Type: Article
Times cited : (46)

References (18)
  • 1
    • 0019296443 scopus 로고
    • Toward more definitive clinical trials
    • Meinert CL. Toward more definitive clinical trials. Controlled Clinical Trials 1980; 1:249-261.
    • (1980) Controlled Clinical Trials , vol.1 , pp. 249-261
    • Meinert, C.L.1
  • 2
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects: the role of randomization
    • Rubin DB. Bayesian inference for causal effects: the role of randomization. The Annals of Statistics 1978; 6:34-58.
    • (1978) The Annals of Statistics , vol.6 , pp. 34-58
    • Rubin, D.B.1
  • 5
    • 0036188782 scopus 로고    scopus 로고
    • Principal stratification in causal inference
    • Frangakis CE, Rubin DB. Principal stratification in causal inference. Biometrics 2002; 58:21-29.
    • (2002) Biometrics , vol.58 , pp. 21-29
    • Frangakis, C.E.1    Rubin, D.B.2
  • 6
    • 24944468294 scopus 로고    scopus 로고
    • Uses and limitations of randomization-based efficacy estimators
    • White IR. Uses and limitations of randomization-based efficacy estimators. Statistical Methods in Medical Research 2005; 14:327-347.
    • (2005) Statistical Methods in Medical Research , vol.14 , pp. 327-347
    • White, I.R.1
  • 7
    • 66949128919 scopus 로고    scopus 로고
    • A comparison of methods for estimating the causal effect of a treatment in randomized clinical trials subject to noncompliance
    • Little RJ, Long Q, Lin X . A comparison of methods for estimating the causal effect of a treatment in randomized clinical trials subject to noncompliance. Biometrics 2009; 65(2):640-649.
    • (2009) Biometrics , vol.65 , Issue.2 , pp. 640-649
    • Little, R.J.1    Long, Q.2    Lin, X.3
  • 8
    • 0000741850 scopus 로고    scopus 로고
    • Addressing complications of intent-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing outcomes
    • Frangakis CE, Rubin DB. Addressing complications of intent-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing outcomes. Biometrika 1999; 86:365-379.
    • (1999) Biometrika , vol.86 , pp. 365-379
    • Frangakis, C.E.1    Rubin, D.B.2
  • 11
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB. Inference and missing data. Biometrika 1976; 63:581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 12
    • 0032365866 scopus 로고    scopus 로고
    • Statistical techniques for analyzing data from prevention trials: treatment of no-shows using Rubin's causal model
    • Little RJ, Yau L. Statistical techniques for analyzing data from prevention trials: treatment of no-shows using Rubin's causal model. Psychological Methods 1998; 3:147-159.
    • (1998) Psychological Methods , vol.3 , pp. 147-159
    • Little, R.J.1    Yau, L.2
  • 13
    • 4444287351 scopus 로고    scopus 로고
    • An extended general location model for causal inferences from data subject to non-compliance and missing values
    • Peng Y, Little RJ, Raghunathan T. An extended general location model for causal inferences from data subject to non-compliance and missing values. Biometrics 2004; 60:598-608.
    • (2004) Biometrics , vol.60 , pp. 598-608
    • Peng, Y.1    Little, R.J.2    Raghunathan, T.3
  • 14
    • 0345424863 scopus 로고    scopus 로고
    • Vol.E9. Statistical Principles for Clinical Trials
    • Food and Drug Administration. Guidance for Industry, Vol.E9. Statistical Principles for Clinical Trials, 1998. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073137.pdf.
    • (1998) Guidance for Industry
  • 15
    • 84865490979 scopus 로고    scopus 로고
    • Including all individuals is not enough: lessons for intention-to-treat analysis
    • White IR, Carpenter J, Horton NJ. Including all individuals is not enough: lessons for intention-to-treat analysis. Clinical Trials 2012; 9:396-407.
    • (2012) Clinical Trials , vol.9 , pp. 396-407
    • White, I.R.1    Carpenter, J.2    Horton, N.J.3
  • 16
    • 84887005678 scopus 로고    scopus 로고
    • Analysis of longitudinal trials with protocol deviation: a framework for relevant, accessible assumptions, and inference via multiple imputation
    • Carpenter JR, Roger JH, Kenward MG. Analysis of longitudinal trials with protocol deviation: a framework for relevant, accessible assumptions, and inference via multiple imputation. Journal of Biopharmaceutical Statistics 2013; (236):1352-1371.
    • (2013) Journal of Biopharmaceutical Statistics , vol.23 , Issue.6 , pp. 1352-1371
    • Carpenter, J.R.1    Roger, J.H.2    Kenward, M.G.3
  • 17
    • 0030460385 scopus 로고    scopus 로고
    • Intent-to-treat analysis in longitudinal studies with drop-outs
    • Little RJ, Yau L. Intent-to-treat analysis in longitudinal studies with drop-outs. Biometrics 1996; 52:1324-1333.
    • (1996) Biometrics , vol.52 , pp. 1324-1333
    • Little, R.J.1    Yau, L.2
  • 18
    • 84887444688 scopus 로고    scopus 로고
    • Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models
    • Ratitch B, O'Kelly M, Tosiello R. Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models. Pharmaceutical Statistics 2013; 12(6):337-347.
    • (2013) Pharmaceutical Statistics , vol.12 , Issue.6 , pp. 337-347
    • Ratitch, B.1    O'Kelly, M.2    Tosiello, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.