메뉴 건너뛰기




Volumn 43, Issue 1, 2015, Pages 150-161

How effective is the Grey Wolf optimizer in training multi-layer perceptrons

Author keywords

Evolutionary algorithm; Grey Wolf optimizer; Learning neural network; MLP; Multi layer perceptron

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BENCHMARKING; CLASSIFICATION (OF INFORMATION); EVOLUTIONARY ALGORITHMS; LEARNING ALGORITHMS; OPTIMIZATION; PARTICLE SWARM OPTIMIZATION (PSO);

EID: 84930277801     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-014-0645-7     Document Type: Article
Times cited : (563)

References (42)
  • 1
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophysics 5:115–133
    • (1943) Bull Math Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 3
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen T (1990) The self-organizing map. Proc IEEE 78:1464–1480
    • (1990) Proc IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 4
    • 0001002401 scopus 로고
    • Approximation and radial-basis-function networks
    • Park J, Sandberg IW (1993) Approximation and radial-basis-function networks. Neural Comput 5:305–316
    • (1993) Neural Comput , vol.5 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 5
    • 0029714384 scopus 로고    scopus 로고
    • Neural networks for time series processing
    • Dorffner G (1996) Neural networks for time series processing, in Neural Network World
    • (1996) in Neural Network World
    • Dorffner, G.1
  • 7
    • 0003611518 scopus 로고    scopus 로고
    • Neural smithing: supervised learning in feedforward artificial neural networks
    • Reed RD, Marks RJ (1998) Neural smithing: supervised learning in feedforward artificial neural networks. Mit Press
    • (1998) Mit Press
    • Reed, R.D.1    Marks, R.J.2
  • 8
    • 33749254096 scopus 로고    scopus 로고
    • An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on Machine learning
    • Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on Machine learning, pp 161–168
    • (2006) pp 161–168
    • Caruana, R.1    Niculescu-Mizil, A.2
  • 9
    • 0003544514 scopus 로고    scopus 로고
    • Unsupervised learning: foundations of neural computation
    • Hinton GE, Sejnowski TJ (1999) Unsupervised learning: foundations of neural computation. MIT press
    • (1999) MIT press
    • Hinton, G.E.1    Sejnowski, T.J.2
  • 10
    • 79960921068 scopus 로고    scopus 로고
    • Unsupervised learning: foundations of neural computation
    • Wang D (2001) Unsupervised learning: foundations of neural computation. AI Mag 22:101
    • (2001) AI Mag , vol.22 , pp. 101
    • Wang, D.1
  • 11
    • 0000331883 scopus 로고
    • Introduction to the theory of neural computation
    • Hertz J (1991) Introduction to the theory of neural computation. Basic Books 1
    • (1991) Basic Books , pp. 1
    • Hertz, J.1
  • 13
    • 85027928606 scopus 로고    scopus 로고
    • Hao G-S: Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput App
    • Wang G-G, Gandomi AH, Alavi AH, Hao G-S (2013) Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput App. doi:10.1007/s00521-013-1485-9
    • (2013) Alavi AH
    • Wang, G.-G.1    Gandomi, A.H.2
  • 16
    • 45949121309 scopus 로고
    • Fast simulated annealing
    • Szu H, Hartley R (1987) Fast simulated annealing. Phys Lett A 122:157–162
    • (1987) Phys Lett A , vol.122 , pp. 157-162
    • Szu, H.1    Hartley, R.2
  • 19
    • 84862858496 scopus 로고    scopus 로고
    • Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm
    • Mirjalili S, Mohd Hashim SZ, Moradian Sardroudi H (2012) Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218:11125–11137
    • (2012) Appl Math Comput , vol.218 , pp. 11125-11137
    • Mirjalili, S.1    Mohd Hashim, S.Z.2    Moradian Sardroudi, H.3
  • 20
    • 0025477595 scopus 로고
    • Genetic algorithms and neural networks: Optimizing connections and connectivity
    • Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms and neural networks: Optimizing connections and connectivity. Parallel comput 14:347–361
    • (1990) Parallel comput , vol.14 , pp. 347-361
    • Whitley, D.1    Starkweather, T.2    Bogart, C.3
  • 21
    • 84930275451 scopus 로고    scopus 로고
    • Particle swarms for feedforward neural network training, learning vol
    • Mendes R, Cortez P, Rocha M, Neves J (2002) Particle swarms for feedforward neural network training, learning vol. 6
    • (2002)
    • Mendes, R.1    Cortez, P.2    Rocha, M.3    Neves, J.4
  • 22
    • 84942134374 scopus 로고    scopus 로고
    • Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks. In: Proceedings swarm intelligence symposium, 2003. SIS’03
    • Gudise V G, Venayagamoorthy G K (2003) Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks. In: Proceedings swarm intelligence symposium, 2003. SIS’03, pp 110–117
    • (2003) pp 110–117
    • Gudise, V.G.1    Venayagamoorthy, G.K.2
  • 23
    • 28944441923 scopus 로고    scopus 로고
    • Training feed-forward neural networks with ant colony optimization: an application to pattern classification. In: 5th international conference on, Hybrid Intelligent Systems, 2005. HIS’05
    • Blum C, Socha K (2005) Training feed-forward neural networks with ant colony optimization: an application to pattern classification. In: 5th international conference on, Hybrid Intelligent Systems, 2005. HIS’05, p 6
    • (2005) p 6
    • Blum, C.1    Socha, K.2
  • 24
    • 34547535038 scopus 로고    scopus 로고
    • An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training
    • Socha K, Blum C (2007) An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Comput Appl 16:235–247
    • (2007) Neural Comput Appl , vol.16 , pp. 235-247
    • Socha, K.1    Blum, C.2
  • 25
    • 37249054534 scopus 로고    scopus 로고
    • Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks,” in Modeling decisions for artificial intelligence ed: Springer
    • Karaboga D, Akay B, Ozturk C (2007) Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks,” in Modeling decisions for artificial intelligence ed: Springer, pp 318–329
    • (2007) pp 318–329
    • Karaboga, D.1    Akay, B.2    Ozturk, C.3
  • 26
    • 80052065001 scopus 로고    scopus 로고
    • IEEE Congress on, Evolutionary Computation (CEC)
    • Ozturk C, Karaboga D (2011) Hybrid Artificial Bee Colony algorithm for neural network training. In: 2011 IEEE Congress on, Evolutionary Computation (CEC), pp 84–88
    • (2011) pp 84–88
    • Ozturk, C.1
  • 27
    • 0037312458 scopus 로고    scopus 로고
    • Differential evolution training algorithm for feed-forward neural networks
    • Ilonen J, Kamarainen J-K, Lampinen J (2003) Differential evolution training algorithm for feed-forward neural networks. Neural Process Lett 17:93–105
    • (2003) Neural Process Lett , vol.17 , pp. 93-105
    • Ilonen, J.1    Kamarainen, J.-K.2    Lampinen, J.3
  • 28
    • 51849137850 scopus 로고    scopus 로고
    • Conference on, Human System Interactions
    • Slowik A, Bialko M (2008) Training of artificial neural networks using differential evolution algorithm. In: 2008 Conference on, Human System Interactions, pp 60–65
    • (2008) pp 60–65
    • Slowik, A.1
  • 29
    • 81855221704 scopus 로고    scopus 로고
    • Training neural networks using central force optimization and particle swarm optimization: insights and comparisons
    • Green II RC, Wang L, Alam M (2012) Training neural networks using central force optimization and particle swarm optimization: insights and comparisons. Expert Syst Appl 39:555–563
    • (2012) Expert Syst Appl , vol.39 , pp. 555-563
    • Green, R.C.1    Wang, L.2    Alam, M.3
  • 30
    • 84907386098 scopus 로고    scopus 로고
    • Social-spider optimization-based artificial neural networks training and its applications for Parkinson’s disease identification. In: 2014 IEEE 27th international symposium on in computer-based medical systems (CBMS)
    • Pereira L, Rodrigues D, Ribeiro P, Papa J, Weber SA (2014) Social-spider optimization-based artificial neural networks training and its applications for Parkinson’s disease identification. In: 2014 IEEE 27th international symposium on in computer-based medical systems (CBMS), pp 14–17
    • (2014) pp 14–17
    • Pereira, L.1    Rodrigues, D.2    Ribeiro, P.3    Papa, J.4    Weber, S.A.5
  • 31
    • 80052008772 scopus 로고    scopus 로고
    • Evolutionary artificial neural network based on chemical reaction optimization. In: 2011 IEEE congress on, evolutionary computation (CEC)
    • Yu JJ, Lam AY, Li VO (2011) Evolutionary artificial neural network based on chemical reaction optimization. In: 2011 IEEE congress on, evolutionary computation (CEC), pp 2083–2090
    • (2011) pp 2083–2090
    • Yu, J.J.1    Lam, A.Y.2    Li, V.O.3
  • 32
    • 84882308363 scopus 로고    scopus 로고
    • Multilayer perceptron neural networks training through charged system search and its Application for non-technical losses detection. In: 2013 IEEE PES conference on, innovative smart grid technologies latin America (ISGT LA)
    • Pereira LA, Afonso LC, Papa JP, Vale ZA, Ramos CC, Gastaldello DS, Souza AN (2013) Multilayer perceptron neural networks training through charged system search and its Application for non-technical losses detection. In: 2013 IEEE PES conference on, innovative smart grid technologies latin America (ISGT LA), pp 1–6
    • (2013) pp 1–6
    • Pereira, L.A.1    Afonso, L.C.2    Papa, J.P.3    Vale, Z.A.4    Ramos, C.C.5    Gastaldello, D.S.6    Souza, A.N.7
  • 33
    • 84881087282 scopus 로고    scopus 로고
    • A multi layer perceptron neural network trained by invasive weed optimization for potato color image segmentation
    • Moallem P, Razmjooy N (2012) A multi layer perceptron neural network trained by invasive weed optimization for potato color image segmentation. Trends Appl Sci Res 7:445–455
    • (2012) Trends Appl Sci Res , vol.7 , pp. 445-455
    • Moallem, P.1    Razmjooy, N.2
  • 34
    • 84908069278 scopus 로고    scopus 로고
    • Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm
    • Uzlu E, Kankal M, Akpınar A, Dede T (2014) Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm. Energy 75:295–303
    • (2014) Energy , vol.75 , pp. 295-303
    • Uzlu, E.1    Kankal, M.2    Akpınar, A.3    Dede, T.4
  • 35
    • 80053139335 scopus 로고    scopus 로고
    • Magnetic optimization algorithm for training multi layer perceptron. In: Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference, IEEE
    • Mirjalili S, Sadiq AS (2011) Magnetic optimization algorithm for training multi layer perceptron. In: Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference, IEEE, pp 42–46
    • (2011) pp 42–46
    • Mirjalili, S.1    Sadiq, A.S.2
  • 36
    • 84930276737 scopus 로고
    • Evolving networks, Using the genetic algorithm with connectionist learning
    • Belew RK, McInerney J, Schraudolph NN (1990) Evolving networks: Using the genetic algorithm with connectionist learning
    • (1990) Schraudolph NN
    • Belew, R.K.1    McInerney, J.2
  • 37
    • 84930272372 scopus 로고    scopus 로고
    • Blake C, Merz CJ (1998) {UCI} Repository of machine learning databases
    • Blake C, Merz CJ (1998) {UCI} Repository of machine learning databases
  • 38
    • 84897064334 scopus 로고    scopus 로고
    • Let a biogeography-based optimizer train your multi-layer perceptron
    • Mirjalili S, Mirjalili SM, Lewis A (2014) Let a biogeography-based optimizer train your multi-layer perceptron. Inf Sci 269:188–209
    • (2014) Inf Sci , vol.269 , pp. 188-209
    • Mirjalili, S.1    Mirjalili, S.M.2    Lewis, A.3
  • 39
    • 0037592480 scopus 로고    scopus 로고
    • Evolution strategies–a comprehensive introduction
    • Beyer H-G, Schwefel H-P (2002) Evolution strategies–a comprehensive introduction. Nat Comput 1:3–52
    • (2002) Nat Comput , vol.1 , pp. 3-52
    • Beyer, H.-G.1    Schwefel, H.-P.2
  • 41
    • 0000046216 scopus 로고    scopus 로고
    • Fast evolution strategies
    • Yao X, Liu Y (1997) Fast evolution strategies. In: evolutionary programming VI, pp 149–161
    • (1997) evolutionary programming , vol.6 , pp. 149-161
    • Yao, X.1    Liu, Y.2
  • 42
    • 0003984832 scopus 로고
    • Population-based incremental learning. a method for integrating genetic search based function optimization and competitive learning
    • Baluja S (1994) Population-based incremental learning. a method for integrating genetic search based function optimization and competitive learning, DTIC Document
    • (1994) DTIC Document
    • Baluja, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.