메뉴 건너뛰기




Volumn 269, Issue , 2014, Pages 188-209

Let a biogeography-based optimizer train your Multi-Layer Perceptron

Author keywords

BBO; Biogeography Based Optimization; Evolutionary algorithm; FNN; Learning neural network; Neural network

Indexed keywords

BACKPROPAGATION; CLASSIFICATION (OF INFORMATION); ECOLOGY; EVOLUTIONARY ALGORITHMS; HEURISTIC ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; OPTIMIZATION;

EID: 84897064334     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.01.038     Document Type: Article
Times cited : (284)

References (81)
  • 1
    • 84886877280 scopus 로고    scopus 로고
    • An optimized virtual network mapping using PSO in cloud computing
    • 2013 21st Iranian Conference on, 14-16 May
    • V. Abedifar, M. Eshghi, S. Mirjalili, S.M. Mirjalili, An optimized virtual network mapping using PSO in cloud computing, in: Electrical Engineering (ICEE), 2013 21st Iranian Conference on, 14-16 May, 2013, pp.1-6, http://dx.doi.org/10.1109/IranianCEE.2013.6599723.
    • (2013) Electrical Engineering (ICEE) , pp. 1-6
    • Abedifar, V.1    Eshghi, M.2    Mirjalili, S.3    Mirjalili, S.M.4
  • 2
    • 0002603370 scopus 로고
    • An adaptive conjugate gradient learning algorithm for efficient training of neural networks
    • H. Adeli, and S. Hung An adaptive conjugate gradient learning algorithm for efficient training of neural networks Appl. Math. Comput. 62 1994 81 102
    • (1994) Appl. Math. Comput. , vol.62 , pp. 81-102
    • Adeli, H.1    Hung, S.2
  • 3
    • 44649129329 scopus 로고    scopus 로고
    • A learning rule for very simple universal approximators consisting of a single layer of perceptrons
    • P. Auer, H. Burgsteiner, and W. Maass A learning rule for very simple universal approximators consisting of a single layer of perceptrons Neural Networks 21 2008 786 795
    • (2008) Neural Networks , vol.21 , pp. 786-795
    • Auer, P.1    Burgsteiner, H.2    Maass, W.3
  • 4
    • 84877744884 scopus 로고    scopus 로고
    • Parameter selection algorithm with self adaptive growing neural network classifier for diagnosis issues
    • M. Barakat, D. Lefebvre, M. Khalil, F. Druaux, and O. Mustapha Parameter selection algorithm with self adaptive growing neural network classifier for diagnosis issues Int. J. Mach. Learn. Cybern. 4 3 2013 217 233
    • (2013) Int. J. Mach. Learn. Cybern. , vol.4 , Issue.3 , pp. 217-233
    • Barakat, M.1    Lefebvre, D.2    Khalil, M.3    Druaux, F.4    Mustapha, O.5
  • 7
    • 84876988608 scopus 로고    scopus 로고
    • A survey on optimization metaheuristics
    • ISSN 0020-0255, (10.07.13)
    • I. Boussaid, J. Lepagnot, and P. Siarry A survey on optimization metaheuristics Inform. Sci. 237 2013 82 117 ISSN 0020-0255, http://dx.doi.org/ 10.1016/j.ins.2013.02.041 (10.07.13)
    • (2013) Inform. Sci. , vol.237 , pp. 82-117
    • Boussaid, I.1    Lepagnot, J.2    Siarry, P.3
  • 9
    • 0026882084 scopus 로고
    • Conjugate gradient algorithm for efficient training of artificial neural networks
    • C. Charalambous, Conjugate gradient algorithm for efficient training of artificial neural networks, in: IET, 1992, pp. 301-310.
    • (1992) IET , pp. 301-310
    • Charalambous, C.1
  • 12
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    • J. Derrac, S. García, D. Molina, and F. Herrera A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms Swarm Evol. Comput. 2011
    • (2011) Swarm Evol. Comput.
    • Derrac, J.1    García, S.2    Molina, D.3    Herrera, F.4
  • 15
    • 70349270458 scopus 로고    scopus 로고
    • A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: A case study on the CEC'2005 special session on real parameter optimization
    • S. García, D. Molina, M. Lozano, and F. Herrera A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 special session on real parameter optimization J. Heuristics 15 2009 617 644
    • (2009) J. Heuristics , vol.15 , pp. 617-644
    • García, S.1    Molina, D.2    Lozano, M.3    Herrera, F.4
  • 16
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron) - A review of applications in the atmospheric sciences
    • M.W. Gardner, and S.R. Dorling Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences Atmos. Environ. 32 1998 2627 2636
    • (1998) Atmos. Environ. , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 19
    • 84862800348 scopus 로고    scopus 로고
    • Sparsely connected neural network-based time series forecasting
    • ISSN 0020-0255, (15.06.12)
    • Z.X. Guo, W.K. Wong, and M. Li Sparsely connected neural network-based time series forecasting Inform. Sci. 193 2012 54 71 ISSN 0020-0255, http://dx.doi.org/10.1016/j.ins.2012.01.011 (15.06.12)
    • (2012) Inform. Sci. , vol.193 , pp. 54-71
    • Guo, Z.X.1    Wong, W.K.2    Li, M.3
  • 20
    • 84885162981 scopus 로고    scopus 로고
    • An analysis of the migration rates for biogeography-based optimization
    • ISSN 0020-0255, (01.01.14)
    • W. Guo, L. Wang, and Q. Wu An analysis of the migration rates for biogeography-based optimization Inform. Sci. 254 2014 111 140 ISSN 0020-0255, http://dx.doi.org/10.1016/j.ins.2013.07.018 (01.01.14)
    • (2014) Inform. Sci. , vol.254 , pp. 111-140
    • Guo, W.1    Wang, L.2    Wu, Q.3
  • 21
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • M.T. Hagan, and M.B. Menhaj Training feedforward networks with the Marquardt algorithm IEEE Trans. Neural Networks 5 1994 989 993
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 22
    • 0036437286 scopus 로고    scopus 로고
    • Simple explanation of the no-free-lunch theorem and its implications
    • Y.C. Ho, and D.L. Pepyne Simple explanation of the no-free-lunch theorem and its implications J. Optim. Theory Appl. 115 2002 549 570
    • (2002) J. Optim. Theory Appl. , vol.115 , pp. 549-570
    • Ho, Y.C.1    Pepyne, D.L.2
  • 23
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White Multilayer feedforward networks are universal approximators Neural Networks 2 1989 359 366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 24
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew Extreme learning machine: theory and applications Neurocomputing 70 2006 489 501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 28
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R.A. Jacobs Increased rates of convergence through learning rate adaptation Neural Networks 1 1988 295 307
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 29
    • 0027226690 scopus 로고
    • An analysis of premature saturation in back propagation learning
    • Y. Lee, S.H. Oh, and M.W. Kim An analysis of premature saturation in back propagation learning Neural Networks 6 1993 719 728
    • (1993) Neural Networks , vol.6 , pp. 719-728
    • Lee, Y.1    Oh, S.H.2    Kim, M.W.3
  • 30
    • 0037276988 scopus 로고    scopus 로고
    • Tuning of the structure and parameters of a neural network using an improved genetic algorithm
    • F.H.F. Leung, H. Lam, S. Ling, and P.K.S. Tam Tuning of the structure and parameters of a neural network using an improved genetic algorithm IEEE Trans. Neural Networks 14 2003 79 88
    • (2003) IEEE Trans. Neural Networks , vol.14 , pp. 79-88
    • Leung, F.H.F.1    Lam, H.2    Ling, S.3    Tam, P.K.S.4
  • 31
    • 84868485348 scopus 로고    scopus 로고
    • Variations of biogeography-based optimization and Markov analysis
    • ISSN 0020-0255, (20.01.13)
    • H. Ma, D. Simon, M. Fei, and Z. Xie Variations of biogeography-based optimization and Markov analysis Inform. Sci. 220 2013 492 506 ISSN 0020-0255, http://dx.doi.org/10.1016/j.ins.2012.07.007 (20.01.13)
    • (2013) Inform. Sci. , vol.220 , pp. 492-506
    • Ma, H.1    Simon, D.2    Fei, M.3    Xie, Z.4
  • 32
    • 0001095092 scopus 로고    scopus 로고
    • On the alleviation of the problem of local minima in back-propagation
    • G. Magoulas, M. Vrahatis, and G. Androulakis On the alleviation of the problem of local minima in back-propagation Nonlinear Anal. 30 1997 4545 4550
    • (1997) Nonlinear Anal. , vol.30 , pp. 4545-4550
    • Magoulas, G.1    Vrahatis, M.2    Androulakis, G.3
  • 34
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • W.S. McCulloch, and W. Pitts A logical calculus of the ideas immanent in nervous activity Bull. Math. Biol. 5 1943 115 133
    • (1943) Bull. Math. Biol. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 35
    • 84859100699 scopus 로고    scopus 로고
    • Genetic optimization of modular neural networks with fuzzy response integration for human recognition
    • ISSN 0020-0255, (15.08.12)
    • P. Patricia Melin, D. Sanchez, and O. Castillo Genetic optimization of modular neural networks with fuzzy response integration for human recognition Inform. Sci. 197 2012 1 19 ISSN 0020-0255, http://dx.doi.org/10.1016/j.ins.2012. 02.027 (15.08.12)
    • (2012) Inform. Sci. , vol.197 , pp. 1-19
    • Patricia Melin, P.1    Sanchez, D.2    Castillo, O.3
  • 38
    • 84875210170 scopus 로고    scopus 로고
    • S-shaped versus V-shaped transfer functions for binary particle swarm optimization
    • (ISSN 2210-6502, (April 2013))
    • S. Mirjalili, and A. Lewis S-shaped versus V-shaped transfer functions for binary particle swarm optimization Swarm Evol. Comput. 9 2013 1 14 (ISSN 2210-6502, http://dx.doi.org/10.1016/j.swevo.2012.09.002 (April 2013))
    • (2013) Swarm Evol. Comput. , vol.9 , pp. 1-14
    • Mirjalili, S.1    Lewis, A.2
  • 40
    • 84893010002 scopus 로고    scopus 로고
    • Grey wolf optimizer
    • 10.1016/j.advengsoft.2013.12.007
    • S. Mirjalili, S.M. Mirjalili, and A. Lewis Grey wolf optimizer Adv. Eng. Softw. 69 2014 46 61 10.1016/j.advengsoft.2013.12.007
    • (2014) Adv. Eng. Softw. , vol.69 , pp. 46-61
    • Mirjalili, S.1    Mirjalili, S.M.2    Lewis, A.3
  • 42
    • 84862858496 scopus 로고    scopus 로고
    • Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm
    • S. Mirjalili, S.Z. Mohd Hashim, and H. Moradian Sardroudi Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm Appl. Math. Comput. 218 22 2012 11125 11137
    • (2012) Appl. Math. Comput. , vol.218 , Issue.22 , pp. 11125-11137
    • Mirjalili, S.1    Mohd Hashim, S.Z.2    Moradian Sardroudi, H.3
  • 43
    • 84874437161 scopus 로고    scopus 로고
    • Light property and optical buffer performance enhancement using particle swarm optimization in oblique Ring-Shape-Hole photonic crystal waveguide
    • S.M. Mirjalili, K. Abedi, S. Mirjalili, Light property and optical buffer performance enhancement using particle swarm optimization in oblique Ring-Shape-Hole photonic crystal waveguide, in: Photonics Global Conference (PGC), 2012, pp. 1-4.
    • (2012) Photonics Global Conference (PGC) , pp. 1-4
    • Mirjalili, S.M.1    Abedi, K.2    Mirjalili, S.3
  • 44
    • 84885187476 scopus 로고    scopus 로고
    • Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide
    • ISSN 0030-4026
    • S.M. Mirjalili, K. Abedi, and S. Mirjalili Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide Optik - Int. J. Light Electron Opt. 124 23 2013 5989 5993 ISSN 0030-4026, http://dx.doi.org/10.1016/j.ijleo.2013.04.114
    • (2013) Optik - Int. J. Light Electron Opt. , vol.124 , Issue.23 , pp. 5989-5993
    • Mirjalili, S.M.1    Abedi, K.2    Mirjalili, S.3
  • 45
    • 84913535424 scopus 로고    scopus 로고
    • Oval-Shaped-Hole photonic crystal waveguide design by MoMIR framework
    • in press
    • S.M. Mirjalili, S. Mirjalili, Oval-Shaped-Hole photonic crystal waveguide design by MoMIR framework, Photonics Technol. Lett. IEEE (2014), in press, http://dx.doi.org/10.1109/LPT.2014.2302478.
    • (2014) Photonics Technol. Lett. IEEE
    • Mirjalili, S.M.1    Mirjalili, S.2
  • 46
    • 84892579903 scopus 로고    scopus 로고
    • A novel multi-objective optimization framework for designing photonic crystal waveguides
    • 10.1109/LPT.2013.2290318
    • S.M. Mirjalili, S. Mirjalili, and A. Lewis A novel multi-objective optimization framework for designing photonic crystal waveguides Photonics Technol. Lett. IEEE 26 2014 146 149 10.1109/LPT.2013.2290318
    • (2014) Photonics Technol. Lett. IEEE , vol.26 , pp. 146-149
    • Mirjalili, S.M.1    Mirjalili, S.2    Lewis, A.3
  • 47
    • 84898794168 scopus 로고    scopus 로고
    • A tri-objective particle swarm optimizer for designing line defect photonic crystal waveguides
    • S.M. Mirjalili, S. Mirjalili, A. Lewis, K. Abedi, A tri-objective particle swarm optimizer for designing line defect photonic crystal waveguides, Photon Nanostruct. Fundam. Appl. (2013), http://dx.doi.org/10.1016/j.photonics. 2013.11.001.
    • (2013) Photon Nanostruct. Fundam. Appl.
    • Mirjalili, S.M.1    Mirjalili, S.2    Lewis, A.3    Abedi, K.4
  • 48
    • 0005939955 scopus 로고    scopus 로고
    • Structure design of neural networks using genetic algorithms
    • S. Mizuta, T. Sato, D. Lao, M. Ikeda, and T. Shimizu Structure design of neural networks using genetic algorithms Complex Syst. 13 2001 161 176
    • (2001) Complex Syst. , vol.13 , pp. 161-176
    • Mizuta, S.1    Sato, T.2    Lao, D.3    Ikeda, M.4    Shimizu, T.5
  • 50
    • 0037174193 scopus 로고    scopus 로고
    • Unsupervised learning in neural computation
    • E. Oja Unsupervised learning in neural computation Theoret. Comput. Sci. 287 2002 187 207
    • (2002) Theoret. Comput. Sci. , vol.287 , pp. 187-207
    • Oja, E.1
  • 51
    • 77955878711 scopus 로고    scopus 로고
    • Biogeography-based optimization of neuro-fuzzy system parameters for diagnosis of cardiac disease
    • M. Ovreiu, D. Simon, Biogeography-based optimization of neuro-fuzzy system parameters for diagnosis of cardiac disease, in: Genetic and Evolutionary Computation Conference, 2010, pp. 1235-1242.
    • (2010) Genetic and Evolutionary Computation Conference , pp. 1235-1242
    • Ovreiu, M.1    Simon, D.2
  • 55
    • 84897104358 scopus 로고    scopus 로고
    • Unit cell topology optimization of line defect photonic crystal waveguide
    • ISSN 2212-0173
    • S. Saremi, S.M. Mirjalili, and S. Mirjalili Unit cell topology optimization of line defect photonic crystal waveguide Procedia Technol. 12 2014 174 179 ISSN 2212-0173, http://dx.doi.org/10.1016/j.protcy.2013.12.472
    • (2014) Procedia Technol. , vol.12 , pp. 174-179
    • Saremi, S.1    Mirjalili, S.M.2    Mirjalili, S.3
  • 56
    • 84897069035 scopus 로고    scopus 로고
    • Chaotic krill herd optimization algorithm
    • ISSN 2212-0173
    • S. Saremi, S.M. Mirjalili, and S. Mirjalili Chaotic krill herd optimization algorithm Procedia Technol. 12 2014 180 185 ISSN 2212-0173, http://dx.doi.org/10.1016/j.protcy.2013.12.473
    • (2014) Procedia Technol. , vol.12 , pp. 180-185
    • Saremi, S.1    Mirjalili, S.M.2    Mirjalili, S.3
  • 60
    • 57249115093 scopus 로고    scopus 로고
    • Biogeography-based optimization
    • D. Simon Biogeography-based optimization IEEE Trans. Evol. Comput. 12 2008 702 713
    • (2008) IEEE Trans. Evol. Comput. , vol.12 , pp. 702-713
    • Simon, D.1
  • 61
    • 78751643505 scopus 로고    scopus 로고
    • Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms
    • ISSN 0020-0255, (01.04.11)
    • D. Simon, R. Rarick, M. Ergezer, and D. Du Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms Inform. Sci. 181 7 2011 1224 1248 ISSN 0020-0255, http://dx.doi.org/10.1016/j.ins.2010. 12.006 (01.04.11)
    • (2011) Inform. Sci. , vol.181 , Issue.7 , pp. 1224-1248
    • Simon, D.1    Rarick, R.2    Ergezer, M.3    Du, D.4
  • 62
    • 4344609320 scopus 로고    scopus 로고
    • (accessed 2012)
    • UCI Machine Learning Repository. < http://archive.ics.uci.edu/ml/ datasets.html > (accessed 2012).
    • UCI Machine Learning Repository
  • 63
    • 0026711368 scopus 로고
    • Improving the convergence of the back-propagation algorithm
    • A. van Ooyen, and B. Nienhuis Improving the convergence of the back-propagation algorithm Neural Networks 5 1992 465 471
    • (1992) Neural Networks , vol.5 , pp. 465-471
    • Van Ooyen, A.1    Nienhuis, B.2
  • 64
    • 34250094997 scopus 로고
    • Accelerating the convergence of the back-propagation method
    • T.P. Vogl, J. Mangis, A. Rigler, W. Zink, and D. Alkon Accelerating the convergence of the back-propagation method Biol. Cybern. 59 1988 257 263
    • (1988) Biol. Cybern. , vol.59 , pp. 257-263
    • Vogl, T.P.1    Mangis, J.2    Rigler, A.3    Zink, W.4    Alkon, D.5
  • 65
    • 84884521545 scopus 로고    scopus 로고
    • Incorporating mutation scheme into krill herd algorithm for global numerical optimization
    • G. Wang, L. Guo, H. Wang, H. Duan, L. Liu, J. Li, Incorporating mutation scheme into krill herd algorithm for global numerical optimization, Neural Comput. Appl. (2012), http://dx.doi.org/10.1007/s00521-012-1304-8.
    • (2012) Neural Comput. Appl.
    • Wang, G.1    Guo, L.2    Wang, H.3    Duan, H.4    Liu, L.5    Li, J.6
  • 66
    • 84884514063 scopus 로고    scopus 로고
    • A chaotic particle-swarm krill herd algorithm for global numerical optimization
    • G.-G. Wang, A.H. Gandomi, and A.H. Alavi A chaotic particle-swarm krill herd algorithm for global numerical optimization Kybernetes 42 6 2013 962 978
    • (2013) Kybernetes , vol.42 , Issue.6 , pp. 962-978
    • Wang, G.-G.1    Gandomi, A.H.2    Alavi, A.H.3
  • 67
    • 84898548583 scopus 로고    scopus 로고
    • An effective krill herd algorithm with migration operator in biogeography-based optimization
    • in press
    • G.-G. Wang, A.H. Gandomi, A.H. Alavi, An effective krill herd algorithm with migration operator in biogeography-based optimization, Appl. Math. Model. (2013), in press, http://dx.doi.org/10.1016/j.apm.2013.10.052.
    • (2013) Appl. Math. Model.
    • Wang, G.-G.1    Gandomi, A.H.2    Alavi, A.H.3
  • 68
    • 84893641121 scopus 로고    scopus 로고
    • Stud krill herd algorithm
    • 10.1016/j.neucom.2013.08.031
    • G.-G. Wang, A.H. Gandomi, and A.H. Alavi Stud krill herd algorithm Neurocomputing 128 2014 363 370 10.1016/j.neucom.2013.08.031
    • (2014) Neurocomputing , vol.128 , pp. 363-370
    • Wang, G.-G.1    Gandomi, A.H.2    Alavi, A.H.3
  • 69
    • 85027928606 scopus 로고    scopus 로고
    • Hybrid krill herd algorithm with differential evolution for global numerical optimization
    • G.-G. Wang, A.H. Gandomi, A.H. Alavi, G.-S. Hao, Hybrid krill herd algorithm with differential evolution for global numerical optimization, Neural Comput. Appl. (2013), http://dx.doi.org/10.1007/s00521-013-1485-9.
    • (2013) Neural Comput. Appl.
    • Wang, G.-G.1    Gandomi, A.H.2    Alavi, A.H.3    Hao, G.-S.4
  • 70
    • 80051593049 scopus 로고    scopus 로고
    • Upper integral network with extreme learning mechanism
    • X.Z. Wang, A. Chen, and H. Feng Upper integral network with extreme learning mechanism Neurocomputing 74 16 2011 2520 2525
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2520-2525
    • Wang, X.Z.1    Chen, A.2    Feng, H.3
  • 71
    • 84870234983 scopus 로고    scopus 로고
    • Architecture selection for networks trained with extreme learning machine using localized generalization error model
    • X.Z. Wang, Q.Y. Shao, M. Qing, and J.H. Zhai Architecture selection for networks trained with extreme learning machine using localized generalization error model Neurocomputing 102 2013 3 9
    • (2013) Neurocomputing , vol.102 , pp. 3-9
    • Wang, X.Z.1    Shao, Q.Y.2    Qing, M.3    Zhai, J.H.4
  • 72
    • 0025724253 scopus 로고
    • A method for self-determination of adaptive learning rates in back propagation
    • M.K. Weir A method for self-determination of adaptive learning rates in back propagation Neural Networks 4 1991 371 379
    • (1991) Neural Networks , vol.4 , pp. 371-379
    • Weir, M.K.1
  • 74
    • 0002437599 scopus 로고
    • Neurocontrol and supervised learning: An overview and evaluation
    • P.J. Werbos Neurocontrol and supervised learning: An overview and evaluation Handbook Intell. Control 65 1992 89
    • (1992) Handbook Intell. Control , vol.65 , pp. 89
    • Werbos, P.J.1
  • 75
    • 0002254946 scopus 로고
    • Minimizing the system error in feedforward neural networks with evolution strategy
    • S. Gielen, B. Kappen, Springer London
    • W. Wienholt Minimizing the system error in feedforward neural networks with evolution strategy S. Gielen, B. Kappen, ICANN '93 1993 Springer London 490 493
    • (1993) ICANN '93 , pp. 490-493
    • Wienholt, W.1
  • 76
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon Individual comparisons by ranking methods Biometrics Bull. 1 1945 80 83
    • (1945) Biometrics Bull. , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 78
    • 0027653233 scopus 로고
    • Evolutionary artificial neural networks
    • X. Yao Evolutionary artificial neural networks Int. J. Neural Syst. 4 1993 203 222
    • (1993) Int. J. Neural Syst. , vol.4 , pp. 203-222
    • Yao, X.1
  • 79
    • 38649118854 scopus 로고    scopus 로고
    • Evolving artificial neural networks using an improved PSO and DPSO
    • J. Yu, S. Wang, and L. Xi Evolving artificial neural networks using an improved PSO and DPSO Neurocomputing 71 2008 1054 1060
    • (2008) Neurocomputing , vol.71 , pp. 1054-1060
    • Yu, J.1    Wang, S.2    Xi, L.3
  • 80
    • 33847379879 scopus 로고    scopus 로고
    • A hybrid particle swarm optimization - Back-propagation algorithm for feedforward neural network training
    • J.R. Zhang, J. Zhang, T.M. Lok, and M.R. Lyu A hybrid particle swarm optimization - back-propagation algorithm for feedforward neural network training Appl. Math. Comput. 185 2007 1026 1037
    • (2007) Appl. Math. Comput. , vol.185 , pp. 1026-1037
    • Zhang, J.R.1    Zhang, J.2    Lok, T.M.3    Lyu, M.R.4
  • 81
    • 67349220042 scopus 로고    scopus 로고
    • An online gradient method with momentum for two-layer feedforward neural networks
    • N. Zhang An online gradient method with momentum for two-layer feedforward neural networks Appl. Math. Comput. 212 2009 488 498
    • (2009) Appl. Math. Comput. , vol.212 , pp. 488-498
    • Zhang, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.