메뉴 건너뛰기




Volumn 30, Issue 10, 2015, Pages 5665-5680

A nanocurrent power management IC for multiple heterogeneous energy harvesting sources

Author keywords

Fractional open circuit voltage (FOCV); maximum power point tracking (MPPT); multisource energy harvesting; nanopower design; photovoltaic (PV); piezoelectric transducers (PZs); thermoelectric generators (TEGs)

Indexed keywords

CONVERSION EFFICIENCY; ELECTRONIC CIRCUIT TRACKING; ENERGY HARVESTING; MAXIMUM POWER POINT TRACKERS; OPEN CIRCUIT VOLTAGE; PIEZOELECTRICITY; POWER CONVERTERS; POWER MANAGEMENT; THERMOELECTRIC EQUIPMENT; THERMOELECTRICITY; TRANSDUCERS; WIRELESS SENSOR NETWORKS;

EID: 84930225254     PISSN: 08858993     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPEL.2014.2379622     Document Type: Article
Times cited : (78)

References (59)
  • 1
    • 0037363135 scopus 로고    scopus 로고
    • Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode
    • Mar.
    • G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, "Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode," IEEE Trans. Power Electron., vol. 18, no. 2, pp. 696-703, Mar. 2003.
    • (2003) IEEE Trans. Power Electron. , vol.18 , Issue.2 , pp. 696-703
    • Ottman, G.K.1    Hofmann, H.F.2    Lesieutre, G.A.3
  • 2
    • 79955735768 scopus 로고    scopus 로고
    • 5 μW-to-10 mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm
    • Y. Qiu, C. Van Liempd, P. G. Blanken, and C. Van Hoof, "5 μW-to-10 mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm," in Proc. IEEE Int. Conf. Solid-State Circuits Conf. Dig. Tech. Papers, 2011, pp. 118-120.
    • (2011) Proc. IEEE Int. Conf. Solid-State Circuits Conf. Dig. Tech. Papers , pp. 118-120
    • Qiu, Y.1    Van Liempd, C.2    Blanken, P.G.3    Van Hoof, C.4
  • 3
    • 71649083187 scopus 로고    scopus 로고
    • Realization of a wearable miniaturized thermoelectric generator for human body applications
    • Nov.
    • Z. Wang, V. Leonov, P. Fiorini, and C. Van Hoof, "Realization of a wearable miniaturized thermoelectric generator for human body applications," Sens. Actuators A, Phys., vol. 156, no. 1, pp. 95-102, Nov. 2009.
    • (2009) Sens. Actuators A, Phys. , vol.156 , Issue.1 , pp. 95-102
    • Wang, Z.1    Leonov, V.2    Fiorini, P.3    Van Hoof, C.4
  • 5
    • 78650804494 scopus 로고    scopus 로고
    • Energy harvesting for human wearable and implantable bio-sensors
    • Jan.
    • P. D.Mitcheson, "Energy harvesting for human wearable and implantable bio-sensors," in Proc. IEEE Eng. Med. Biol. Soc. Conf., Jan. 2010, vol. 2010, pp. 3432-3436.
    • (2010) Proc. IEEE Eng. Med. Biol. Soc. Conf. , vol.2010 , pp. 3432-3436
    • Mitcheson, P.D.1
  • 6
    • 84859586936 scopus 로고    scopus 로고
    • Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation
    • Jun.
    • D. Guyomar and M. Lallart, "Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation," Micromachines, vol. 2, no. 4, pp. 274-294, Jun. 2011.
    • (2011) Micromachines , vol.2 , Issue.4 , pp. 274-294
    • Guyomar, D.1    Lallart, M.2
  • 8
    • 51649122440 scopus 로고    scopus 로고
    • Energy harvesting from human and machine motion for wireless electronic devices
    • Sep.
    • P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. Holmes, and T. C. Green, "Energy harvesting from human and machine motion for wireless electronic devices," Proc. IEEE, vol. 96, no. 9, pp. 1457-1486, Sep. 2008.
    • (2008) Proc. IEEE , vol.96 , Issue.9 , pp. 1457-1486
    • Mitcheson, P.D.1    Yeatman, E.M.2    Rao, G.K.3    Holmes, A.4    Green, T.C.5
  • 9
    • 84855645427 scopus 로고    scopus 로고
    • Review of power conditioning for kinetic energy harvesting systems
    • Feb.
    • G. Szarka, B. Stark, and S. Burrow, "Review of power conditioning for kinetic energy harvesting systems," IEEE Trans. Power Electron., vol. 27, no. 2, pp. 803-815, Feb. 2012.
    • (2012) IEEE Trans. Power Electron. , vol.27 , Issue.2 , pp. 803-815
    • Szarka, G.1    Stark, B.2    Burrow, S.3
  • 10
    • 78650598829 scopus 로고    scopus 로고
    • A scalable micro-power converter for multi-source piezoelectric energy harvesting applications
    • Jan.
    • A. Romani, R. P. Paganelli, and M. Tartagni, "A scalable micro-power converter for multi-source piezoelectric energy harvesting applications," Procedia Eng., vol. 5, pp. 782-785, Jan. 2010.
    • (2010) Procedia Eng. , vol.5 , pp. 782-785
    • Romani, A.1    Paganelli, R.P.2    Tartagni, M.3
  • 11
    • 38849175413 scopus 로고    scopus 로고
    • Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems
    • Mar.
    • M. Ferrari, V. Ferrari,M. Guizzetti, D. Marioli, and A. Taroni, "Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems," Sens. Actuators A, Phys., vol. 142, no. 1, pp. 329-335, Mar. 2008.
    • (2008) Sens. Actuators A, Phys. , vol.142 , Issue.1 , pp. 329-335
    • Ferrari, M.1    Ferrari, V.2    Guizzetti, M.3    Marioli, D.4    Taroni, A.5
  • 12
    • 84883303124 scopus 로고    scopus 로고
    • Micro-power design of a fully autonomous energy harvesting circuit for arrays of piezoelectric transducers
    • A. Romani, M. Filippi, and M. Tartagni, "Micro-power design of a fully autonomous energy harvesting circuit for arrays of piezoelectric transducers," IEEE Trans. Power Electron., vol. 29, no. 2, pp. 729-739, 2014.
    • (2014) IEEE Trans. Power Electron. , vol.29 , Issue.2 , pp. 729-739
    • Romani, A.1    Filippi, M.2    Tartagni, M.3
  • 14
    • 83655203564 scopus 로고    scopus 로고
    • A multiple-input boost converter for low-power energy harvesting
    • Dec.
    • C. Shi and B. Miller, "A multiple-input boost converter for low-power energy harvesting," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 12, pp. 827-831, Dec. 2011.
    • (2011) IEEE Trans. Circuits Syst. II, Exp. Briefs , vol.58 , Issue.12 , pp. 827-831
    • Shi, C.1    Miller, B.2
  • 15
    • 84930230285 scopus 로고    scopus 로고
    • [Online]. Available
    • Linear Technology. DC2080A. (2013). [Online]. Available: http://www. linear.com/solutions/1834
    • (2013) DC2080A
    • Linear Technology1
  • 16
    • 80051764459 scopus 로고    scopus 로고
    • Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes
    • Sep.
    • Y. K. Tan and S. K. Panda, "Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes," IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4424-4435, Sep. 2011.
    • (2011) IEEE Trans. Ind. Electron. , vol.58 , Issue.9 , pp. 4424-4435
    • Tan, Y.K.1    Panda, S.K.2
  • 17
    • 79959674982 scopus 로고    scopus 로고
    • Design and realization of a wearable multi-frequency RF energy harvesting system
    • D. Masotti, A. Costanzo, and S. Adami, "Design and realization of a wearable multi-frequency RF energy harvesting system," in Proc. 5th Eur. Conf. Antennas Propag., 2011, pp. 517-520.
    • (2011) Proc. 5th Eur. Conf. Antennas Propag. , pp. 517-520
    • Masotti, D.1    Costanzo, A.2    Adami, S.3
  • 18
    • 84873287753 scopus 로고    scopus 로고
    • Comparison of MEMS PZT cantilevers based on d 31 and d 33 modes for vibration energy harvesting
    • S. Kim, H. Park, S. Kim, H. C. Wikle, J. Park, and D. Kim, "Comparison of MEMS PZT cantilevers based on d 31 and d 33 modes for vibration energy harvesting," Microelectromech. Syst. J., vol. 22, no. 1, pp. 26-33, 2013.
    • (2013) Microelectromech. Syst. J. , vol.22 , Issue.1 , pp. 26-33
    • Kim, S.1    Park, H.2    Kim, S.3    Wikle, H.C.4    Park, J.5    Kim, D.6
  • 19
    • 84884742797 scopus 로고    scopus 로고
    • Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate
    • Oct.
    • E. E. Aktakka, N. Ghafouri, C. E. Smith, R. L. Peterson, M. M. Hussain, S. Member, and K. Najafi, "Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate," IEEE Electron Device Lett., vol. 34, no. 10, pp. 1334-1336, Oct. 2013.
    • (2013) IEEE Electron Device Lett. , vol.34 , Issue.10 , pp. 1334-1336
    • Aktakka, E.E.1    Ghafouri, N.2    Smith, C.E.3    Peterson, R.L.4    Hussain, M.M.5    Member, S.6    Najafi, K.7
  • 21
    • 84865508481 scopus 로고    scopus 로고
    • Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor
    • S. Bandyopadhyay and A. P. Chandrakasan, "Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor," IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199-2215, 2012.
    • (2012) IEEE J. Solid-State Circuits , vol.47 , Issue.9 , pp. 2199-2215
    • Bandyopadhyay, S.1    Chandrakasan, A.P.2
  • 23
    • 82955164393 scopus 로고    scopus 로고
    • A fully autonomous pulsed synchronous charge extractor for high-voltage piezoelectric harvesters
    • T. Hehn, D. Maurath, F. Hagedorn, D. Marinkovic, I. Kuehne, A. Frey, and Y. Manoli, "A fully autonomous pulsed synchronous charge extractor for high-voltage piezoelectric harvesters," in Proc. ESSCIRC, 2011, pp. 371-374.
    • (2011) Proc. ESSCIRC , pp. 371-374
    • Hehn, T.1    Maurath, D.2    Hagedorn, F.3    Marinkovic, D.4    Kuehne, I.5    Frey, A.6    Manoli, Y.7
  • 24
    • 84861744825 scopus 로고    scopus 로고
    • Efficient energy harvesting with electromagnetic energy transducers using active lowvoltage rectification and maximum power point tracking
    • Jun.
    • D. Maurath, P. F. Becker, D. Spreemann, and Y. Manoli, "Efficient energy harvesting with electromagnetic energy transducers using active lowvoltage rectification and maximum power point tracking," IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1369-1380, Jun. 2012.
    • (2012) IEEE J. Solid-State Circuits , vol.47 , Issue.6 , pp. 1369-1380
    • Maurath, D.1    Becker, P.F.2    Spreemann, D.3    Manoli, Y.4
  • 28
    • 84887271175 scopus 로고    scopus 로고
    • Extended wireless structural monitoring through intelligent hybrid energy supply
    • Apr.
    • M. Magno, D. Boyle, D. Brunelli, and B. O'Flynn, "Extended wireless structural monitoring through intelligent hybrid energy supply," IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1871-1881, Apr. 2014.
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.4 , pp. 1871-1881
    • Magno, M.1    Boyle, D.2    Brunelli, D.3    O'flynn, B.4
  • 29
    • 33750713281 scopus 로고    scopus 로고
    • A self-powered wireless sensor for indoor environmental monitoring
    • Austin, TX, USA
    • E. Leland, E. Lai, and P. Wright, "A self-powered wireless sensor for indoor environmental monitoring," in Proc. Wireless Netw. Symp., Austin, TX, USA 2004, pp. 1-5.
    • (2004) Proc. Wireless Netw. Symp. , pp. 1-5
    • Leland, E.1    Lai, E.2    Wright, P.3
  • 30
    • 84880572400 scopus 로고    scopus 로고
    • Vibrational energy harvesting from human gait
    • Apr.
    • N. Elvin and A. Elvin, "Vibrational energy harvesting from human gait," IEEE/ASME Mechatronics, vol. 18, no. 2, pp. 637-644, Apr. 2013.
    • (2013) IEEE/ASME Mechatronics , vol.18 , Issue.2 , pp. 637-644
    • Elvin, N.1    Elvin, A.2
  • 31
    • 84880553166 scopus 로고    scopus 로고
    • UHF wearable Rectenna on textile materials
    • Jul.
    • G. Monti, L. Corchia, and L. Tarricone, "UHF wearable Rectenna on textile materials," IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3869-3873, Jul. 2013.
    • (2013) IEEE Trans. Antennas Propag. , vol.61 , Issue.7 , pp. 3869-3873
    • Monti, G.1    Corchia, L.2    Tarricone, L.3
  • 34
    • 84897506083 scopus 로고    scopus 로고
    • Optimized energy-aware wireless system for identification of the relative positioning of articulated systems in the free space
    • May
    • A. Bertacchini, G. Napoletano, and D. Dondi, "Optimized energy-aware wireless system for identification of the relative positioning of articulated systems in the free space," IEEE Sensors J., vol. 14, no. 5, pp. 1682-1692, May 2014.
    • (2014) IEEE Sensors J. , vol.14 , Issue.5 , pp. 1682-1692
    • Bertacchini, A.1    Napoletano, G.2    Dondi, D.3
  • 35
    • 83455245233 scopus 로고    scopus 로고
    • An input-powered vibrational energy harvesting interface circuit with zero standby power
    • Dec.
    • Y. Rao and D. Arnold, "An input-powered vibrational energy harvesting interface circuit with zero standby power," IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3524-3533, Dec. 2011.
    • (2011) IEEE Trans. Power Electron. , vol.26 , Issue.12 , pp. 3524-3533
    • Rao, Y.1    Arnold, D.2
  • 36
    • 84893985203 scopus 로고    scopus 로고
    • A single-input four-output (SIFO) AC-DC rectifying system for vibration energy harvesting
    • Jun.
    • J. Kim, J. Kim, M. Sim, S. Kim, and C. Kim, "A single-input four-output (SIFO) AC-DC rectifying system for vibration energy harvesting," IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2629-2633, Jun. 2014.
    • (2014) IEEE Trans. Power Electron. , vol.29 , Issue.6 , pp. 2629-2633
    • Kim, J.1    Kim, J.2    Sim, M.3    Kim, S.4    Kim, C.5
  • 37
    • 73249134340 scopus 로고    scopus 로고
    • An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor
    • Jan.
    • Y. K. Ramadass andA. P.Chandrakasan, "An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor," IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 189-204, Jan. 2010.
    • (2010) IEEE J. Solid-State Circuits , vol.45 , Issue.1 , pp. 189-204
    • Ramadass, Y.K.1    Chandrakasan, A.P.2
  • 41
    • 84898059804 scopus 로고    scopus 로고
    • Self-powered 30 μW-to-10 mW Piezoelectric energy-harvesting system with 9.09 ms/V maximum power point tracking time
    • M. Shim, J. Kim, J. Jung, and C. Kim, "Self-powered 30 μW-to-10 mW Piezoelectric energy-harvesting system with 9.09 ms/V maximum power point tracking time," in Proc. IEEE Int. Conf. Conf. Dig. Tech. Papers., 2014, pp. 406-408.
    • (2014) Proc. IEEE Int. Conf. Conf. Dig. Tech. Papers. , pp. 406-408
    • Shim, M.1    Kim, J.2    Jung, J.3    Kim, C.4
  • 42
    • 84898069690 scopus 로고    scopus 로고
    • An energy pile-up resonance circuit extracting maximum 422% energy from piezoelectric material in a dualsource energy-harvesting interface
    • Y. Yuk, S. Jung, and H. Gwon, "An energy pile-up resonance circuit extracting maximum 422% energy from piezoelectric material in a dualsource energy-harvesting interface," in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2014, vol. 3, pp. 402-404.
    • (2014) Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers , vol.3 , pp. 402-404
    • Yuk, Y.1    Jung, S.2    Gwon, H.3
  • 43
    • 79960516702 scopus 로고    scopus 로고
    • Wideband energy harvesting for piezoelectric devices with linear resonant behavior
    • Jul.
    • C. Luo and H. F. Hofmann, "Wideband energy harvesting for piezoelectric devices with linear resonant behavior," IEEE Trans.Ultrason., Ferroelectr. Freq. Control, vol. 58, no. 7, pp. 1294, Jul. 2011.
    • (2011) IEEE Trans.Ultrason., Ferroelectr. Freq. Control , vol.58 , Issue.7 , pp. 1294
    • Luo, C.1    Hofmann, H.F.2
  • 44
    • 61849183658 scopus 로고    scopus 로고
    • Active piezoelectric energy harvesting: General principle and experimental demonstration
    • Y. Liu, G. Tian, Y. Wang, J. Lin, Q. Zhang, and H. F. Hofmann, "Active piezoelectric energy harvesting: General principle and experimental demonstration," J. Intell. Mat. Syst. Struct., vol. 20, pp. 575-585 2009.
    • (2009) J. Intell. Mat. Syst. Struct. , vol.20 , pp. 575-585
    • Liu, Y.1    Tian, G.2    Wang, Y.3    Lin, J.4    Zhang, Q.5    Hofmann, H.F.6
  • 45
    • 84862128298 scopus 로고    scopus 로고
    • Powerextraction circuits for piezoelectric energy harvesters in miniature and low-power applications
    • Nov.
    • J. Dicken, P. D. Mitcheson, I. Stoianov, and E. M. Yeatman, "Powerextraction circuits for piezoelectric energy harvesters in miniature and low-power applications," IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4514-4529, Nov. 2012.
    • (2012) IEEE Trans. Power Electron. , vol.27 , Issue.11 , pp. 4514-4529
    • Dicken, J.1    Mitcheson, P.D.2    Stoianov, I.3    Yeatman, E.M.4
  • 46
    • 84873346754 scopus 로고    scopus 로고
    • Joint modeling of piezoelectric transducers and power conversion circuits for energy harvesting applications
    • Mar.
    • A. Romani, R. P. Paganelli, E. Sangiorgi, and M. Tartagni, "Joint modeling of piezoelectric transducers and power conversion circuits for energy harvesting applications," IEEE Sensors J., vol. 13, no. 3, pp. 916-925, Mar. 2013.
    • (2013) IEEE Sensors J. , vol.13 , Issue.3 , pp. 916-925
    • Romani, A.1    Paganelli, R.P.2    Sangiorgi, E.3    Tartagni, M.4
  • 48
    • 84949555417 scopus 로고    scopus 로고
    • Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test bed
    • D. P. Hohm and M. E. Ropp, "Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test bed," in Proc. IEEE 28th Conf. Rec. Photovoltic Spec. Conf., 2000, pp. 1699-1702.
    • (2000) Proc. IEEE 28th Conf. Rec. Photovoltic Spec. Conf. , pp. 1699-1702
    • Hohm, D.P.1    Ropp, M.E.2
  • 49
    • 34249794869 scopus 로고    scopus 로고
    • Comparison of photovoltaic array maximum power point tracking techniques
    • Jun.
    • T. Esram and P. L. Chapman, "Comparison of photovoltaic array maximum power point tracking techniques," IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439-449, Jun. 2007.
    • (2007) IEEE Trans. Energy Convers. , vol.22 , Issue.2 , pp. 439-449
    • Esram, T.1    Chapman, P.L.2
  • 53
    • 77957670848 scopus 로고    scopus 로고
    • A study of ambient vibrations for piezoelectric energy conversion
    • E. Reilly and L. Miller, "A study of ambient vibrations for piezoelectric energy conversion," in Proc. Power MEMS, 2009, pp. 312-315.
    • (2009) Proc. Power MEMS , pp. 312-315
    • Reilly, E.1    Miller, L.2
  • 54
    • 77952143100 scopus 로고    scopus 로고
    • Asingle-inductorAC-DC piezoelectric energy-harvester/battery-charger IC converting ±(0.35 to 1.2 V) to (2.7 to 4.5 V)
    • D.Kwon andG.A.Rincon-Mora, "Asingle-inductorAC-DC piezoelectric energy-harvester/battery-charger IC converting ±(0.35 to 1.2 V) to (2.7 to 4.5 V)," in Proc. IEEE Int. Solid-State Circuits Conf., 2010, vol. 22, no. 1, pp. 494-495.
    • (2010) Proc. IEEE Int. Solid-State Circuits Conf. , vol.22 , Issue.1 , pp. 494-495
    • Kwon, D.1    Rincon-Mora, G.A.2
  • 56
    • 84906950988 scopus 로고    scopus 로고
    • A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes
    • Sep.
    • E. Aktakka and K. Najafi, "A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes," Solid-State Circuits, IEEE J., vol. 49, no. 9, pp. 2017-2029, Sep. 2014.
    • (2014) Solid-State Circuits, IEEE J. , vol.49 , Issue.9 , pp. 2017-2029
    • Aktakka, E.1    Najafi, K.2
  • 59
    • 84930230289 scopus 로고    scopus 로고
    • [Online]. Available
    • Ixys. CPC1822. (2012). [Online]. Available: http://ixapps.ixys.com/PartDetails.aspx?pid = 6133&r = 1.
    • (2012)
    • Ixys. CPC18221


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.