-
1
-
-
0037400540
-
A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering
-
Yoshimoto H., Shin Y.M., Terai H., Vacanti J.P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003, 24:2077-2082.
-
(2003)
Biomaterials
, vol.24
, pp. 2077-2082
-
-
Yoshimoto, H.1
Shin, Y.M.2
Terai, H.3
Vacanti, J.P.4
-
2
-
-
3042782581
-
Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems
-
Hutmacher D.W., Sittinger M., Risbud M.V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 2004, 22:354-362.
-
(2004)
Trends Biotechnol.
, vol.22
, pp. 354-362
-
-
Hutmacher, D.W.1
Sittinger, M.2
Risbud, M.V.3
-
3
-
-
53649106672
-
Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study
-
Kasten P., Beyen I., Niemeyer P., Luginbuhl R., Bohner M., Richter W. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater. 2008, 4:1904-1915.
-
(2008)
Acta Biomater.
, vol.4
, pp. 1904-1915
-
-
Kasten, P.1
Beyen, I.2
Niemeyer, P.3
Luginbuhl, R.4
Bohner, M.5
Richter, W.6
-
4
-
-
0347384083
-
Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques
-
Dutta Roy T., Simon J.L., Ricci J.L., Rekow E.D., Thompson V.P., Parsons J.R. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. J. Biomed. Mater. Res., Part A 2003, 67:1228-1237.
-
(2003)
J. Biomed. Mater. Res., Part A
, vol.67
, pp. 1228-1237
-
-
Dutta Roy, T.1
Simon, J.L.2
Ricci, J.L.3
Rekow, E.D.4
Thompson, V.P.5
Parsons, J.R.6
-
5
-
-
21844438003
-
Porous scaffold design for tissue engineering
-
Hollister S.J. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4:518-524.
-
(2005)
Nat. Mater.
, vol.4
, pp. 518-524
-
-
Hollister, S.J.1
-
6
-
-
17844400927
-
Porosity of 3D biomaterial scaffolds and osteogenesis
-
Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26:5474-5491.
-
(2005)
Biomaterials
, vol.26
, pp. 5474-5491
-
-
Karageorgiou, V.1
Kaplan, D.2
-
7
-
-
0034765279
-
Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition
-
Zeltinger J., Sherwood J.K., Graham D.A., Mueller R., Griffith L.G. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001, 7:557-572.
-
(2001)
Tissue Eng.
, vol.7
, pp. 557-572
-
-
Zeltinger, J.1
Sherwood, J.K.2
Graham, D.A.3
Mueller, R.4
Griffith, L.G.5
-
8
-
-
34250683711
-
Novel electrohydrodynamic printing of nanocomposite biopolymer scaffolds
-
Gupta A., Seifalian A.M., Ahmad Z., Edirisinghe M.J., Winslet M.C. Novel electrohydrodynamic printing of nanocomposite biopolymer scaffolds. J. Bioact. Compat. Polym. 2007, 22:265-280.
-
(2007)
J. Bioact. Compat. Polym.
, vol.22
, pp. 265-280
-
-
Gupta, A.1
Seifalian, A.M.2
Ahmad, Z.3
Edirisinghe, M.J.4
Winslet, M.C.5
-
9
-
-
0346828647
-
A novel process for simultaneous printing of multiple tracks from concentrated suspensions
-
Jayasinghe S.N., Edirisinghe M.J. A novel process for simultaneous printing of multiple tracks from concentrated suspensions. Mater. Res. Innov. 2003, 7:62-64.
-
(2003)
Mater. Res. Innov.
, vol.7
, pp. 62-64
-
-
Jayasinghe, S.N.1
Edirisinghe, M.J.2
-
10
-
-
23044468190
-
Instrument for electrohydrodynamic print-patterning three-dimensional complex structures
-
Wang D.Z., Jayasinghe S.N., Edirisinghe M.J. Instrument for electrohydrodynamic print-patterning three-dimensional complex structures. Rev. Sci. Instrum. 2005, 76.
-
(2005)
Rev. Sci. Instrum.
, vol.76
-
-
Wang, D.Z.1
Jayasinghe, S.N.2
Edirisinghe, M.J.3
-
11
-
-
84878216381
-
Print head design and control for electrohydrodynamic printing of silk fibroin
-
Hashimdeen S.H., Miodownik M., Edirisinghe M.J. Print head design and control for electrohydrodynamic printing of silk fibroin. Mater. Sci. Eng. C Mater. 2013, 33:3309-3318.
-
(2013)
Mater. Sci. Eng. C Mater.
, vol.33
, pp. 3309-3318
-
-
Hashimdeen, S.H.1
Miodownik, M.2
Edirisinghe, M.J.3
-
12
-
-
84878127942
-
Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting
-
Wei C., Dong J.Y. Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting. J. Micromech. Microeng. 2013, 23.
-
(2013)
J. Micromech. Microeng.
, vol.23
-
-
Wei, C.1
Dong, J.Y.2
-
13
-
-
84915748144
-
The design and construction of an electrohydrodynamic cartesian robot for the preparation of tissue engineering constructs
-
Hashimdeen S.H., Miodownik M., Edirisinghe M.J. The design and construction of an electrohydrodynamic cartesian robot for the preparation of tissue engineering constructs. PLoS ONE 2014, 9:e112166.
-
(2014)
PLoS ONE
, vol.9
-
-
Hashimdeen, S.H.1
Miodownik, M.2
Edirisinghe, M.J.3
-
14
-
-
40049090999
-
Electrospinning: applications in drug delivery and tissue engineering
-
Sill T.J., von Recum H.A. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 2008, 29:1989-2006.
-
(2008)
Biomaterials
, vol.29
, pp. 1989-2006
-
-
Sill, T.J.1
von Recum, H.A.2
-
15
-
-
70349792411
-
Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery
-
Yoo H.S., Kim T.G., Park T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 2009, 61:1033-1042.
-
(2009)
Adv. Drug Deliv. Rev.
, vol.61
, pp. 1033-1042
-
-
Yoo, H.S.1
Kim, T.G.2
Park, T.G.3
-
16
-
-
84890092062
-
Preparation and characterization of an electrospun polycaprolactone (PCL) fibrousmat and multi-layered PCL scaffolds having a nanosized pattern-surface for tissue regeneration
-
Jeon H., Kim G. Preparation and characterization of an electrospun polycaprolactone (PCL) fibrousmat and multi-layered PCL scaffolds having a nanosized pattern-surface for tissue regeneration. J. Mater. Chem. B 2014, 2:171-180.
-
(2014)
J. Mater. Chem. B
, vol.2
, pp. 171-180
-
-
Jeon, H.1
Kim, G.2
-
17
-
-
84860778997
-
Fabrication of patterned nanofibrous; Mats using direct-write electrospinning
-
Lee J., Lee S.Y., Jang J., Jeong Y.H., Cho D.W. Fabrication of patterned nanofibrous; Mats using direct-write electrospinning. Langmuir 2012, 28:7267-7275.
-
(2012)
Langmuir
, vol.28
, pp. 7267-7275
-
-
Lee, J.1
Lee, S.Y.2
Jang, J.3
Jeong, Y.H.4
Cho, D.W.5
-
18
-
-
84928475913
-
A modified electro-centrifugal spinning method to enhance the production rate of highly aligned nanofiber
-
Khamforoush M., Asgari T. A modified electro-centrifugal spinning method to enhance the production rate of highly aligned nanofiber. NANO 2015, 10:15500161-15500167.
-
(2015)
NANO
, vol.10
, pp. 15500161-15500167
-
-
Khamforoush, M.1
Asgari, T.2
-
19
-
-
84880330092
-
Forming of polymer nanofibers by a pressurised gyration process
-
Mahalingam S., Edirisinghe M. Forming of polymer nanofibers by a pressurised gyration process. Macromol. Rapid Commun. 2013, 34:1134-1139.
-
(2013)
Macromol. Rapid Commun.
, vol.34
, pp. 1134-1139
-
-
Mahalingam, S.1
Edirisinghe, M.2
-
20
-
-
84922463798
-
Formation of protein and protein-gold nanoparticle stabilized microbubbles by pressurized gyration
-
Mahalingam S., Raimi-Abraham B.T., Craig D.Q., Edirisinghe M. Formation of protein and protein-gold nanoparticle stabilized microbubbles by pressurized gyration. Langmuir 2014, 31(2):659-666.
-
(2014)
Langmuir
, vol.31
, Issue.2
, pp. 659-666
-
-
Mahalingam, S.1
Raimi-Abraham, B.T.2
Craig, D.Q.3
Edirisinghe, M.4
-
21
-
-
84867545160
-
Electrospun nanoyarn scaffold and its application in tissue engineering
-
Wu J.L., Liu S., He L.P., Wang H.S., He C.L., Fan C.Y., Me X.M. Electrospun nanoyarn scaffold and its application in tissue engineering. Mater. Lett. 2012, 89:146-149.
-
(2012)
Mater. Lett.
, vol.89
, pp. 146-149
-
-
Wu, J.L.1
Liu, S.2
He, L.P.3
Wang, H.S.4
He, C.L.5
Fan, C.Y.6
Me, X.M.7
-
22
-
-
84897507863
-
Cell penetration to nanofibrous scaffolds: forcespinning(R), an alternative approach for fabricating 3D nanofibers
-
Rampichova M., Buzgo M., Chvojka J., Prosecka E., Kofronova O., Amler E. Cell penetration to nanofibrous scaffolds: forcespinning(R), an alternative approach for fabricating 3D nanofibers. Cell Adhes. Migr. 2014, 8:36-41.
-
(2014)
Cell Adhes. Migr.
, vol.8
, pp. 36-41
-
-
Rampichova, M.1
Buzgo, M.2
Chvojka, J.3
Prosecka, E.4
Kofronova, O.5
Amler, E.6
-
23
-
-
84894422931
-
Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications
-
Ramier J., Bouderlique T., Stoilova O., Manolova N., Rashkov I., Langlois V., Renard E., Albanese P., Grande D. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications. Mater. Sci. Eng., C 2014, 38:161-169.
-
(2014)
Mater. Sci. Eng., C
, vol.38
, pp. 161-169
-
-
Ramier, J.1
Bouderlique, T.2
Stoilova, O.3
Manolova, N.4
Rashkov, I.5
Langlois, V.6
Renard, E.7
Albanese, P.8
Grande, D.9
-
24
-
-
56349100057
-
Use of electrospinning technique for biomedical applications
-
Agarwal S., Wendorff J.H., Greiner A. Use of electrospinning technique for biomedical applications. Polymer 2008, 49:5603-5621.
-
(2008)
Polymer
, vol.49
, pp. 5603-5621
-
-
Agarwal, S.1
Wendorff, J.H.2
Greiner, A.3
-
25
-
-
54349100943
-
Attachment, proliferation and differentiation of BMSCs on gas-jet/electrospun nHAP/PHB fibrous scaffolds
-
Guan D.H., Chen Z.Q., Huang C.P., Lin Y.H. Attachment, proliferation and differentiation of BMSCs on gas-jet/electrospun nHAP/PHB fibrous scaffolds. Appl. Surf. Sci. 2008, 255:324-327.
-
(2008)
Appl. Surf. Sci.
, vol.255
, pp. 324-327
-
-
Guan, D.H.1
Chen, Z.Q.2
Huang, C.P.3
Lin, Y.H.4
-
26
-
-
38449087800
-
3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation
-
Moroni L., Schotel R., Hamann D., de Wijn J.R., van Blitterswijk C.A. 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv. Funct. Mater. 2008, 18:53-60.
-
(2008)
Adv. Funct. Mater.
, vol.18
, pp. 53-60
-
-
Moroni, L.1
Schotel, R.2
Hamann, D.3
de Wijn, J.R.4
van Blitterswijk, C.A.5
-
27
-
-
70349467409
-
Three-dimensional polycaprolactone hierarchical scaffolds supplemented with natural biomaterials to enhance mesenchymal stem cell proliferation
-
Yoon H., Ahn S.H., Kim G.H. Three-dimensional polycaprolactone hierarchical scaffolds supplemented with natural biomaterials to enhance mesenchymal stem cell proliferation. Macromol. Rapid Commun. 2009, 30:1632-1637.
-
(2009)
Macromol. Rapid Commun.
, vol.30
, pp. 1632-1637
-
-
Yoon, H.1
Ahn, S.H.2
Kim, G.H.3
-
28
-
-
84890468596
-
Cell-printed hierarchical scaffolds consisting of micro-sized polycaprolactone (PCL) and electrospun PCL nanofibers/cell-laden alginate struts for tissue regeneration
-
Yeo M., Kim G. Cell-printed hierarchical scaffolds consisting of micro-sized polycaprolactone (PCL) and electrospun PCL nanofibers/cell-laden alginate struts for tissue regeneration. J. Mater. Chem. B 2014, 2:314-324.
-
(2014)
J. Mater. Chem. B
, vol.2
, pp. 314-324
-
-
Yeo, M.1
Kim, G.2
-
29
-
-
84904689982
-
Electrohydrodynamic jet process for pore-structure-controlled 3D fibrous architecture as a tissue regenerative material: fabrication and cellular activities
-
Kim M.S., Kim G. Electrohydrodynamic jet process for pore-structure-controlled 3D fibrous architecture as a tissue regenerative material: fabrication and cellular activities. Langmuir 2014, 30:8551-8557.
-
(2014)
Langmuir
, vol.30
, pp. 8551-8557
-
-
Kim, M.S.1
Kim, G.2
-
30
-
-
0037054154
-
Structure and process relationship of electrospun bioabsorbable nanofiber membranes
-
Zong X., Kim K., Fang D., Ran S., Hsiao B.S., Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43:4403-4412.
-
(2002)
Polymer
, vol.43
, pp. 4403-4412
-
-
Zong, X.1
Kim, K.2
Fang, D.3
Ran, S.4
Hsiao, B.S.5
Chu, B.6
-
31
-
-
1642484969
-
Optimization and characterization of dextran membranes prepared by electrospinning
-
Jiang H., Fang D., Hsiao B.S., Chu B., Chen W. Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 2004, 5:326-333.
-
(2004)
Biomacromolecules
, vol.5
, pp. 326-333
-
-
Jiang, H.1
Fang, D.2
Hsiao, B.S.3
Chu, B.4
Chen, W.5
-
33
-
-
84898067720
-
Recent advances in electrospinning technology and biomedical applications of electrospun fibers
-
Lu W.J., Sun J.S., Jiang X.Y. Recent advances in electrospinning technology and biomedical applications of electrospun fibers. J. Mater. Chem. B 2014, 2:2369-2380.
-
(2014)
J. Mater. Chem. B
, vol.2
, pp. 2369-2380
-
-
Lu, W.J.1
Sun, J.S.2
Jiang, X.Y.3
-
34
-
-
73549098444
-
The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model
-
Roosa S.M.M., Kemppainen J.M., Moffitt E.N., Krebsbach P.H., Hollister S.J. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J. Biomed. Mater. Res., Part A 2010, 92A:359-368.
-
(2010)
J. Biomed. Mater. Res., Part A
, vol.92A
, pp. 359-368
-
-
Roosa, S.M.M.1
Kemppainen, J.M.2
Moffitt, E.N.3
Krebsbach, P.H.4
Hollister, S.J.5
-
35
-
-
34250862636
-
Polymer surface modification for the attachment of bioactive compounds
-
Goddard J.M., Hotchkiss J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 2007, 32:698-725.
-
(2007)
Prog. Polym. Sci.
, vol.32
, pp. 698-725
-
-
Goddard, J.M.1
Hotchkiss, J.H.2
-
36
-
-
33744826245
-
Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells
-
Khatiwala C.B., Peyton S.R., Putnam A.J. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell Physiol. 2006, 290:C1640-C1650.
-
(2006)
Am. J. Physiol. Cell Physiol.
, vol.290
, pp. C1640-C1650
-
-
Khatiwala, C.B.1
Peyton, S.R.2
Putnam, A.J.3
-
37
-
-
0347384083
-
Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques
-
Roy T.D., Simon J.L., Ricci J.L., Rekow E.D., Thompson V.P., Parsons J.R. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. J. Biomed. Mater. Res., Part A 2003, 67A:1228-1237.
-
(2003)
J. Biomed. Mater. Res., Part A
, vol.67A
, pp. 1228-1237
-
-
Roy, T.D.1
Simon, J.L.2
Ricci, J.L.3
Rekow, E.D.4
Thompson, V.P.5
Parsons, J.R.6
-
38
-
-
77957309354
-
Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression
-
Kim K., Yeatts A., Dean D., Fisher J.P. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng. Part B Rev. 2010, 16:523-539.
-
(2010)
Tissue Eng. Part B Rev.
, vol.16
, pp. 523-539
-
-
Kim, K.1
Yeatts, A.2
Dean, D.3
Fisher, J.P.4
-
39
-
-
67650494356
-
Effect of initial cell seeding density on early osteogenic signal expression of rat bone marrow stromal cells cultured on cross-linked poly(propylene fumarate) disks
-
Kim K., Dean D., Mikos A.G., Fisher J.P. Effect of initial cell seeding density on early osteogenic signal expression of rat bone marrow stromal cells cultured on cross-linked poly(propylene fumarate) disks. Biomacromolecules 2009, 10:1810-1817.
-
(2009)
Biomacromolecules
, vol.10
, pp. 1810-1817
-
-
Kim, K.1
Dean, D.2
Mikos, A.G.3
Fisher, J.P.4
-
40
-
-
34247562172
-
The regulation of osteogenesis by ECM rigidity in MC3T3-E1 cells requires MAPK activation
-
Khatiwala C.B., Peyton S.R., Metzke M., Putnam A.J. The regulation of osteogenesis by ECM rigidity in MC3T3-E1 cells requires MAPK activation. J. Cell. Physiol. 2007, 211:661-672.
-
(2007)
J. Cell. Physiol.
, vol.211
, pp. 661-672
-
-
Khatiwala, C.B.1
Peyton, S.R.2
Metzke, M.3
Putnam, A.J.4
|