메뉴 건너뛰기




Volumn 8, Issue 3, 2015, Pages 183-202

Summarizing and understanding large graphs

Author keywords

Graph summarization; Graph visualization; Minimum description length

Indexed keywords

GRAPHIC METHODS;

EID: 84929835950     PISSN: 19321864     EISSN: 19321872     Source Type: Journal    
DOI: 10.1002/sam.11267     Document Type: Article
Times cited : (77)

References (63)
  • 1
    • 0033204106 scopus 로고    scopus 로고
    • On power-law relationships of the internet topology
    • In Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM), Barcelona, Spain
    • M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the internet topology, In Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM), Barcelona, Spain, 1999, 251-262.
    • (1999) , pp. 251-262
    • Faloutsos, M.1    Faloutsos, P.2    Faloutsos, C.3
  • 2
    • 84929843826 scopus 로고    scopus 로고
    • Netmine: New mining tools for large graphs
    • In SDM Workshop on Link Analysis, Counter-terrorism and Privacy
    • D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos, and G. Blelloch, Netmine: New mining tools for large graphs, In SDM Workshop on Link Analysis, Counter-terrorism and Privacy, 2004.
    • (2004)
    • Chakrabarti, D.1    Zhan, Y.2    Blandford, D.3    Faloutsos, C.4    Blelloch, G.5
  • 3
    • 52949106331 scopus 로고    scopus 로고
    • Statistical properties of community structure in large social and information networks
    • In Proceedings of the 17th International Conference on World Wide Web (WWW), Beijing, China
    • J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, Statistical properties of community structure in large social and information networks, In Proceedings of the 17th International Conference on World Wide Web (WWW), Beijing, China, 2008, 695-704.
    • (2008) , pp. 695-704
    • Leskovec, J.1    Lang, K.J.2    Dasgupta, A.3    Mahoney, M.W.4
  • 4
    • 84929844837 scopus 로고    scopus 로고
    • Eigenspokes: Surprising patterns and community structure in large graphs
    • Proceedings of the 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Hyderabad, India
    • B. A. Prakash, M. Seshadri, A. Sridharan, S. Machiraju, and C. Faloutsos, Eigenspokes: Surprising patterns and community structure in large graphs, Proceedings of the 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Hyderabad, India, 2010.
    • (2010)
    • Prakash, B.A.1    Seshadri, M.2    Sridharan, A.3    Machiraju, S.4    Faloutsos, C.5
  • 5
    • 0032681035 scopus 로고    scopus 로고
    • Multilevel-way hypergraph partitioning
    • In Proceedings of the 36th Conference on Design Automation(DAC), New Orleans, LA
    • G. Karypis and V. Kumar, Multilevel-way hypergraph partitioning, In Proceedings of the 36th Conference on Design Automation(DAC), New Orleans, LA, 1999, 343-348.
    • (1999) , pp. 343-348
    • Karypis, G.1    Kumar, V.2
  • 6
    • 0027652468 scopus 로고
    • Substructure discovery using minimum description length and background knowledge
    • D. J. Cook and L. B. Holder, Substructure discovery using minimum description length and background knowledge, J Artif Intell Res 1 (1994), 231-255.
    • (1994) J Artif Intell Res , vol.1 , pp. 231-255
    • Cook, D.J.1    Holder, L.B.2
  • 7
    • 0024640140 scopus 로고
    • An algorithm for drawing general undirected graphs
    • T. Kamada and S. Kawai, An algorithm for drawing general undirected graphs, Infor Process Lett 31 (1989), 7-15.
    • (1989) Infor Process Lett , vol.31 , pp. 7-15
    • Kamada, T.1    Kawai, S.2
  • 8
    • 84910103691 scopus 로고    scopus 로고
    • Slashburn: Graph compression and mining beyond caveman communities
    • Y. Lim, U. Kang, and C. Faloutsos, Slashburn: Graph compression and mining beyond caveman communities, IEEE Trans Knowl Data Eng, 26 (2014), 3077-3089.
    • (2014) IEEE Trans Knowl Data Eng , vol.26 , pp. 3077-3089
    • Lim, Y.1    Kang, U.2    Faloutsos, C.3
  • 9
    • 1842544764 scopus 로고    scopus 로고
    • A simple conceptual model for the internet topology
    • Proceeding of the Global Communications Conference Exhibition and Industry Forum, San Antonio, TX
    • L. Tauro, C. Palmer, G. Siganos, and M. Faloutsos, A simple conceptual model for the internet topology, Proceeding of the Global Communications Conference Exhibition and Industry Forum, San Antonio, TX, 2001.
    • (2001)
    • Tauro, L.1    Palmer, C.2    Siganos, G.3    Faloutsos, M.4
  • 10
    • 0002423050 scopus 로고    scopus 로고
    • The web as a graph: Measurements, models and methods
    • In Proceedings of the 5th Annual International Conference (COCOON), Tokyo, Japan
    • J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, The web as a graph: Measurements, models and methods, In Proceedings of the 5th Annual International Conference (COCOON), Tokyo, Japan, 1999.
    • (1999)
    • Kleinberg, J.1    Kumar, R.2    Raghavan, P.3    Rajagopalan, S.4    Tomkins, A.5
  • 11
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen, Modeling by shortest data description, Automatica 14 (1978), 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 12
    • 84924397145 scopus 로고    scopus 로고
    • VoG: Summarizing graphs using rich vocabularies
    • In Proceedings of the SIAM International Conference on Data Mining (SDM), Philadelphia, PA, SIAM
    • D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, VoG: Summarizing graphs using rich vocabularies, In Proceedings of the SIAM International Conference on Data Mining (SDM), Philadelphia, PA, SIAM, 2014.
    • (2014)
    • Koutra, D.1    Kang, U.2    Vreeken, J.3    Faloutsos, C.4
  • 13
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • J. Rissanen, A universal prior for integers and estimation by minimum description length, Ann Stat 11 (1983), 416-431.
    • (1983) Ann Stat , vol.11 , pp. 416-431
    • Rissanen, J.1
  • 17
    • 80052648024 scopus 로고    scopus 로고
    • Model order selection for Boolean matrix factorization
    • In Proceedings of the 17th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Diego, CA
    • P. Miettinen and J. Vreeken, Model order selection for Boolean matrix factorization, In Proceedings of the 17th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Diego, CA, 2011, 51-59.
    • (2011) , pp. 51-59
    • Miettinen, P.1    Vreeken, J.2
  • 18
    • 84874050544 scopus 로고    scopus 로고
    • mdl4bmf: Minimum description length for Boolean matrix factorization
    • Technical Report MPI-I-2012-5-001, Max Planck Institute for Informatics
    • P. Miettinen and J. Vreeken, mdl4bmf: Minimum description length for Boolean matrix factorization. Technical Report MPI-I-2012-5-001, Max Planck Institute for Informatics, 2012.
    • (2012)
    • Miettinen, P.1    Vreeken, J.2
  • 19
    • 80052413037 scopus 로고    scopus 로고
    • Unifying guilt-by-association approaches: Theorems and fast algorithms
    • In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens, Greece
    • D. Koutra, T.-Y. Ke, U. Kang, D. H. Chau, H.-K. K. Pao, and C. Faloutsos, Unifying guilt-by-association approaches: Theorems and fast algorithms, In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens, Greece, 2011, 245-260.
    • (2011) , pp. 245-260
    • Koutra, D.1    Ke, T.-Y.2    Kang, U.3    Chau, D.H.4    Pao, H.-K.K.5    Faloutsos, C.6
  • 20
    • 85196059107 scopus 로고    scopus 로고
    • Flickr,.
    • Flickr, http://www.flickr.com.
  • 21
    • 85196101450 scopus 로고    scopus 로고
    • Snap,.
    • Snap, http://snap.stanford.edu/data/index.html.
  • 22
    • 85196122236 scopus 로고    scopus 로고
    • Enron dataset,.
    • Enron dataset, http://www.cs.cmu.edu/enron.
  • 23
    • 85196078736 scopus 로고    scopus 로고
    • As-oregon dataset,.
    • As-oregon dataset, http://topology.eecs.umich.edu/data.html.
  • 25
    • 70350660923 scopus 로고    scopus 로고
    • Characteristic relational patterns
    • In Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Paris, France
    • A. Koopman and A. Siebes, Characteristic relational patterns, In Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Paris, France, 2009, 437-446.
    • (2009) , pp. 437-446
    • Koopman, A.1    Siebes, A.2
  • 26
    • 85196085182 scopus 로고    scopus 로고
    • The long and the short of it: Summarizing event sequences with serial episodes
    • In Proceedings of the 18th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Beijing, China
    • N. Tatti and J. Vreeken, The long and the short of it: Summarizing event sequences with serial episodes, In Proceedings of the 18th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Beijing, China, 2012.
    • (2012)
    • Tatti, N.1    Vreeken, J.2
  • 27
    • 34547982227 scopus 로고    scopus 로고
    • gSpan: Graph-based substructure pattern mining
    • In IEEE International Conference on Data Mining, Los Alamitos, CA
    • X. Yan and J. Han, gSpan: Graph-based substructure pattern mining, In IEEE International Conference on Data Mining, Los Alamitos, CA, 2002.
    • (2002)
    • Yan, X.1    Han, J.2
  • 28
    • 84907007746 scopus 로고    scopus 로고
    • Beyond blocks: Hyperbolic community detection
    • In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Nancy, France
    • M. Araujo, S. Günnemann, G. Mateos, and C. Faloutsos, Beyond blocks: Hyperbolic community detection, In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Nancy, France, 2014, 50-65.
    • (2014) , pp. 50-65
    • Araujo, M.1    Günnemann, S.2    Mateos, G.3    Faloutsos, C.4
  • 29
    • 34547284903 scopus 로고    scopus 로고
    • On data mining, compression and Kolmogorov complexity
    • C. Faloutsos and V. Megalooikonomou, On data mining, compression and Kolmogorov complexity, Data Mining Knowl Discov 15 (2007), 3-20.
    • (2007) Data Mining Knowl Discov , vol.15 , pp. 3-20
    • Faloutsos, C.1    Megalooikonomou, V.2
  • 31
    • 33750304892 scopus 로고    scopus 로고
    • Compression picks the item sets that matter
    • In Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), Berlin, Germany
    • M. van Leeuwen, J. Vreeken, and A. Siebes, Compression picks the item sets that matter, In Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), Berlin, Germany, 2006, 585-592.
    • (2006) , pp. 585-592
    • van Leeuwen, M.1    Vreeken, J.2    Siebes, A.3
  • 32
    • 12244296737 scopus 로고    scopus 로고
    • Fully automatic cross-associations
    • In Proceedings of the 10th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Seattle, WA
    • D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos, Fully automatic cross-associations, In Proceedings of the 10th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Seattle, WA, 2004, 79-88.
    • (2004) , pp. 79-88
    • Chakrabarti, D.1    Papadimitriou, S.2    Modha, D.S.3    Faloutsos, C.4
  • 33
    • 84908225464 scopus 로고    scopus 로고
    • mdl4bmf: Minimum description length for Boolean matrix factorization
    • P. Miettinen and J. Vreeken, mdl4bmf: Minimum description length for Boolean matrix factorization, ACM Trans Knowl Discov Data 8 (2014), 1-30.
    • (2014) ACM Trans Knowl Discov Data , vol.8 , pp. 1-30
    • Miettinen, P.1    Vreeken, J.2
  • 34
    • 84880091878 scopus 로고    scopus 로고
    • The odd one out: Identifying and characterising anomalies
    • In Proceedings of the 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ
    • K. Smets and J. Vreeken, The odd one out: Identifying and characterising anomalies, In Proceedings of the 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ, 2011, 804-815.
    • (2011) , pp. 804-815
    • Smets, K.1    Vreeken, J.2
  • 35
    • 85196111807 scopus 로고    scopus 로고
    • CompreX: Compression based anomaly detection
    • In Proceedings of the 21st ACM Conference on Information and Knowledge Management (CIKM), Maui, HI
    • L. Akoglu, H. Tong, J. Vreeken, and C. Faloutsos, CompreX: Compression based anomaly detection, In Proceedings of the 21st ACM Conference on Information and Knowledge Management (CIKM), Maui, HI, 2012.
    • (2012)
    • Akoglu, L.1    Tong, H.2    Vreeken, J.3    Faloutsos, C.4
  • 36
    • 85196072838 scopus 로고    scopus 로고
    • Spotting culprits in epidemics: How many and which ones?
    • In Proceedings of the 12th IEEE International Conference on Data Mining (ICDM), Brussels, Belgium
    • B. A. Prakash, J. Vreeken, and C. Faloutsos, Spotting culprits in epidemics: How many and which ones? In Proceedings of the 12th IEEE International Conference on Data Mining (ICDM), Brussels, Belgium, 2012.
    • (2012)
    • Prakash, B.A.1    Vreeken, J.2    Faloutsos, C.3
  • 37
    • 84929843069 scopus 로고    scopus 로고
    • Mining connection pathways for marked nodes in large graphs
    • In Proceedings of the SIAM International Conference on Data Mining (SDM), Austin, TX
    • L. Akoglu, J. Vreeken, H. Tong, N. Tatti, and C. Faloutsos, Mining connection pathways for marked nodes in large graphs, In Proceedings of the SIAM International Conference on Data Mining (SDM), Austin, TX, 2013.
    • (2013)
    • Akoglu, L.1    Vreeken, J.2    Tong, H.3    Tatti, N.4    Faloutsos, C.5
  • 38
    • 57149123096 scopus 로고    scopus 로고
    • The webgraph framework I: compression techniques
    • In International World Wide Web Conference
    • P. Boldi and S. Vigna, The webgraph framework I: compression techniques, In International World Wide Web Conference, 2004.
    • (2004)
    • Boldi, P.1    Vigna, S.2
  • 39
    • 70350694219 scopus 로고    scopus 로고
    • On compressing social networks
    • In Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Paris, France
    • F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Raghavan, On compressing social networks, In Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Paris, France, 2009, 219-228.
    • (2009) , pp. 219-228
    • Chierichetti, F.1    Kumar, R.2    Lattanzi, S.3    Mitzenmacher, M.4    Panconesi, A.5    Raghavan, P.6
  • 40
    • 77956196952 scopus 로고    scopus 로고
    • Graph compression by bfs
    • A. Apostolico and G. Drovandi, Graph compression by bfs, Algorithms 2 (2009), 1031-1044.
    • (2009) Algorithms , vol.2 , pp. 1031-1044
    • Apostolico, A.1    Drovandi, G.2
  • 41
    • 85196060519 scopus 로고    scopus 로고
    • Neighbor query friendly compression of social networks
    • In Proceedings of the 16th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Washington, DC
    • H. Maserrat and J. Pei, Neighbor query friendly compression of social networks, In Proceedings of the 16th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Washington, DC, 2010.
    • (2010)
    • Maserrat, H.1    Pei, J.2
  • 42
    • 84894640994 scopus 로고    scopus 로고
    • Compression-based graph mining exploiting structure primitives
    • In Proceedings of the 13th IEEE International Conference on Data Mining (ICDM), Dallas, TX
    • J. Feng, X. He, N. Hubig, C. BÖhm, and C. Plant, Compression-based graph mining exploiting structure primitives, In Proceedings of the 13th IEEE International Conference on Data Mining (ICDM), Dallas, TX, 2013, 181-190.
    • (2013) , pp. 181-190
    • Feng, J.1    He, X.2    Hubig, N.3    BÖhm, C.4    Plant, C.5
  • 43
    • 57149123533 scopus 로고    scopus 로고
    • Efficient aggregation for graph summarization
    • In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Vancouver, BC
    • Y. Tian, R. A. Hankins, and J. M. Patel, Efficient aggregation for graph summarization, In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Vancouver, BC, 2008, 567-580.
    • (2008) , pp. 567-580
    • Tian, Y.1    Hankins, R.A.2    Patel, J.M.3
  • 44
    • 77952750771 scopus 로고    scopus 로고
    • Discovery-driven graph summarization
    • In Proceedings of the 26th International Conference on Data Engineering (ICDE), Long Beach, CA
    • N. Zhang, Y. Tian, and J. M. Patel, Discovery-driven graph summarization, In Proceedings of the 26th International Conference on Data Engineering (ICDE), Long Beach, CA, 2010, 880-891.
    • (2010) , pp. 880-891
    • Zhang, N.1    Tian, Y.2    Patel, J.M.3
  • 45
    • 80052677864 scopus 로고    scopus 로고
    • Compression of weighted graphs
    • In Proceedings of the 17th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Diego, CA
    • H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka, Compression of weighted graphs, In Proceedings of the 17th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Diego, CA, 2011, 965-973.
    • (2011) , pp. 965-973
    • Toivonen, H.1    Zhou, F.2    Hartikainen, A.3    Hinkka, A.4
  • 46
    • 33749581229 scopus 로고    scopus 로고
    • Sampling from large graphs
    • In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '06, New York, ACM
    • J. Leskovec and C. Faloutsos, Sampling from large graphs, In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '06, New York, ACM, 2006, 631-636.
    • (2006) , pp. 631-636
    • Leskovec, J.1    Faloutsos, C.2
  • 47
    • 67049137972 scopus 로고    scopus 로고
    • Metropolis algorithms for representative subgraph sampling
    • In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM '08, IEEE Computer Society, Washington, DC, USA
    • C. Hübler, H.-P. Kriegel, K. Borgwardt, and Z. Ghahramani, Metropolis algorithms for representative subgraph sampling, In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM '08, IEEE Computer Society, Washington, DC, USA, 2008, 283-292.
    • (2008) , pp. 283-292
    • Hübler, C.1    Kriegel, H.-P.2    Borgwardt, K.3    Ghahramani, Z.4
  • 48
    • 77954604479 scopus 로고    scopus 로고
    • Sampling community structure
    • In Proceedings of the 19th International Conference on World Wide Web (WWW), New York, ACM
    • A. S. Maiya and T. Y. Berger-Wolf, Sampling community structure, In Proceedings of the 19th International Conference on World Wide Web (WWW), New York, ACM, 2010, 701-710.
    • (2010) , pp. 701-710
    • Maiya, A.S.1    Berger-Wolf, T.Y.2
  • 49
    • 77954593786 scopus 로고    scopus 로고
    • Effectively visualizing large networks through sampling
    • In 16th IEEE Visualization Conference (VIS 2005), Minneapolis, MN, 48.
    • D. Rafiei and S. Curial, Effectively visualizing large networks through sampling, In 16th IEEE Visualization Conference (VIS 2005), Minneapolis, MN, 2005, 48.
    • (2005)
    • Rafiei, D.1    Curial, S.2
  • 50
    • 30344488259 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • In Proceedings of the Sixth Symposium on Operating Systems Design and Implementation (OSDI), San Francisco, CA
    • J. Dean and S. Ghemawat, Mapreduce: Simplified data processing on large clusters, In Proceedings of the Sixth Symposium on Operating Systems Design and Implementation (OSDI), San Francisco, CA, 2004.
    • (2004)
    • Dean, J.1    Ghemawat, S.2
  • 51
    • 52649132363 scopus 로고    scopus 로고
    • Discovering relational items sets efficiently
    • In Proceedings of the 8th SIAM International Conference on Data Mining (SDM), Atlanta, GA
    • A. Koopman and A. Siebes, Discovering relational items sets efficiently, In Proceedings of the 8th SIAM International Conference on Data Mining (SDM), Atlanta, GA, 2008, 108-119.
    • (2008) , pp. 108-119
    • Koopman, A.1    Siebes, A.2
  • 52
    • 57149127816 scopus 로고    scopus 로고
    • Graph summarization with bounded error
    • In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Vancouver, BC
    • S. Navlakha, R. Rastogi, and N. Shrivastava, Graph summarization with bounded error, In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Vancouver, BC, 2008, 419-432.
    • (2008) , pp. 419-432
    • Navlakha, S.1    Rastogi, R.2    Shrivastava, N.3
  • 53
    • 56049088564 scopus 로고    scopus 로고
    • Hierarchical, parameter-free community discovery
    • In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Antwerp, Belgium
    • S. Papadimitriou, J. Sun, C. Faloutsos, and P. S. Yu, Hierarchical, parameter-free community discovery, In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Antwerp, Belgium, 2008, 170-187.
    • (2008) , pp. 170-187
    • Papadimitriou, S.1    Sun, J.2    Faloutsos, C.3    Yu, P.S.4
  • 54
    • 34250655368 scopus 로고    scopus 로고
    • An information-theoretic framework for resolving community structure in complex networks
    • M. Rosvall and C. T. Bergstrom, An information-theoretic framework for resolving community structure in complex networks, Proc Natl Acad Sci USA, 104 (2007), 7327-7331.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 7327-7331
    • Rosvall, M.1    Bergstrom, C.T.2
  • 55
    • 85127937233 scopus 로고    scopus 로고
    • Apolo: interactive large graph sensemaking by combining machine learning and visualization
    • In Proceedings of the 17th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Diego, CA
    • D. H. Chau, A. Kittur, J. I. Hong, and C. Faloutsos, Apolo: interactive large graph sensemaking by combining machine learning and visualization, In Proceedings of the 17th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Diego, CA, 2011.
    • (2011)
    • Chau, D.H.1    Kittur, A.2    Hong, J.I.3    Faloutsos, C.4
  • 56
    • 85196100959 scopus 로고    scopus 로고
    • Opavion: mining and visualization in large graphs
    • In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Scottsdale, AZ
    • L. Akoglu, D. H. Chau, U. Kang, D. Koutra, and C. Faloutsos, Opavion: mining and visualization in large graphs, In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Scottsdale, AZ, 2012.
    • (2012)
    • Akoglu, L.1    Chau, D.H.2    Kang, U.3    Koutra, D.4    Faloutsos, C.5
  • 57
    • 84872530219 scopus 로고    scopus 로고
    • Pegasus: A peta-scale graph mining system-implementation and observations
    • In Proceedings of the 9th IEEE International Conference on Data Mining (ICDM), Miami, FL
    • U. Kang, C. Tsourakakis, and C. Faloutsos, Pegasus: A peta-scale graph mining system-implementation and observations, In Proceedings of the 9th IEEE International Conference on Data Mining (ICDM), Miami, FL, 2009.
    • (2009)
    • Kang, U.1    Tsourakakis, C.2    Faloutsos, C.3
  • 58
    • 84929841743 scopus 로고    scopus 로고
    • Oddball: Spotting anomalies in weighted graphs
    • In Proceedings of the 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Hyderabad, India
    • L. Akoglu, M. McGlohon, and C. Faloutsos, Oddball: Spotting anomalies in weighted graphs, In Proceedings of the 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Hyderabad, India, 2010.
    • (2010)
    • Akoglu, L.1    McGlohon, M.2    Faloutsos, C.3
  • 59
    • 85196112996 scopus 로고    scopus 로고
    • Extreme visualization: squeezing a billion records into a million pixels
    • In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Vancouver, BC
    • B. Shneiderman, Extreme visualization: squeezing a billion records into a million pixels, In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Vancouver, BC, 2008.
    • (2008)
    • Shneiderman, B.1
  • 60
    • 4644263678 scopus 로고    scopus 로고
    • By chance is not enough: Preserving relative density through non uniform sampling
    • In Proceedings of the Information Visualisation
    • E. Bertini and G. Santucci, By chance is not enough: Preserving relative density through non uniform sampling, In Proceedings of the Information Visualisation, 2004.
    • (2004)
    • Bertini, E.1    Santucci, G.2
  • 61
    • 85196114461 scopus 로고    scopus 로고
    • Net-ray: Visualizing and mining billion-scale graphs
    • In Proceedings of the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Tainan, Taiwan
    • U. Kang, J.-Y. Lee, D. Koutra, and C. Faloutsos, Net-ray: Visualizing and mining billion-scale graphs, In Proceedings of the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Tainan, Taiwan, 2014.
    • (2014)
    • Kang, U.1    Lee, J.-Y.2    Koutra, D.3    Faloutsos, C.4
  • 62
    • 84877992917 scopus 로고    scopus 로고
    • Motif simplification: Improving network visualization readability with fan, connector, and clique glyphs
    • In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), New York, ACM
    • C. Dunne and B. Shneiderman, Motif simplification: Improving network visualization readability with fan, connector, and clique glyphs, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), New York, ACM, 2013, 3247-3256.
    • (2013) , pp. 3247-3256
    • Dunne, C.1    Shneiderman, B.2
  • 63
    • 84924397145 scopus 로고    scopus 로고
    • VoG: Summarizing and Understanding Large Graphs
    • In Proceedings of the SIAM International Conference on Data Mining (SDM), Philadelphia, PA
    • D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, VoG: Summarizing and Understanding Large Graphs, In Proceedings of the SIAM International Conference on Data Mining (SDM), Philadelphia, PA, 2014.
    • (2014)
    • Koutra, D.1    Kang, U.2    Vreeken, J.3    Faloutsos, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.