메뉴 건너뛰기




Volumn 33, Issue 3-4, 2015, Pages 317-334

Bioelectrochemical system platform for sustainable environmental remediation and energy generation

Author keywords

Bioelectrochemical system; Microbial fuel cell; Oxidation; Reduction; Remediation

Indexed keywords

AZO DYES; ELECTRODES; ENERGY UTILIZATION; ENVIRONMENTAL TECHNOLOGY; INORGANIC COMPOUNDS; MICROBIAL FUEL CELLS; OXIDATION; REDUCTION; REMEDIATION;

EID: 84929506583     PISSN: 07349750     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.biotechadv.2015.04.003     Document Type: Review
Times cited : (266)

References (153)
  • 1
    • 84895073088 scopus 로고    scopus 로고
    • Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production
    • Abourached C., Catal T., Liu H. Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res 2014, 51:228-233.
    • (2014) Water Res , vol.51 , pp. 228-233
    • Abourached, C.1    Catal, T.2    Liu, H.3
  • 2
    • 84910026537 scopus 로고    scopus 로고
    • Desalination combined with hexavalent chromium reduction in a microbial desalination cell
    • An Z., Zhang H., Wen Q., Chen Z., Du M. Desalination combined with hexavalent chromium reduction in a microbial desalination cell. Desalination 2014, 354:181-188.
    • (2014) Desalination , vol.354 , pp. 181-188
    • An, Z.1    Zhang, H.2    Wen, Q.3    Chen, Z.4    Du, M.5
  • 4
    • 0029136191 scopus 로고
    • Bioremediation of petroleum pollutants
    • Atlas R.M., Cerniglia C.E. Bioremediation of petroleum pollutants. BioScience 1995, 45:332-338.
    • (1995) BioScience , vol.45 , pp. 332-338
    • Atlas, R.M.1    Cerniglia, C.E.2
  • 5
    • 34247098528 scopus 로고    scopus 로고
    • Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE
    • Aulenta F., Catervi A., Majone M., Panero S., Reale P., Rossetti S. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 2007, 41:2554-2559.
    • (2007) Environ Sci Technol , vol.41 , pp. 2554-2559
    • Aulenta, F.1    Catervi, A.2    Majone, M.3    Panero, S.4    Reale, P.5    Rossetti, S.6
  • 6
    • 49749101275 scopus 로고    scopus 로고
    • 2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system
    • 2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system. Environ Sci Technol 2008, 42:6185-6190.
    • (2008) Environ Sci Technol , vol.42 , pp. 6185-6190
    • Aulenta, F.1    Canosa, A.2    Majone, M.3    Panero, S.4    Reale, P.5    Rossetti, S.6
  • 7
    • 64749102025 scopus 로고    scopus 로고
    • Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators
    • Aulenta F., Canosa A., Reale P., Rossetti S., Panero S., Majone M. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol Bioeng 2009, 103:85-91.
    • (2009) Biotechnol Bioeng , vol.103 , pp. 85-91
    • Aulenta, F.1    Canosa, A.2    Reale, P.3    Rossetti, S.4    Panero, S.5    Majone, M.6
  • 8
    • 77956173875 scopus 로고    scopus 로고
    • The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene
    • Aulenta F., Maio V.D., Ferri T., Majone M. The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene. Bioresour Technol 2010, 101:9728-9733.
    • (2010) Bioresour Technol , vol.101 , pp. 9728-9733
    • Aulenta, F.1    Maio, V.D.2    Ferri, T.3    Majone, M.4
  • 9
    • 80053409340 scopus 로고    scopus 로고
    • Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms
    • Aulenta F., Tocca L., Verdini R., Reale P., Majone M. Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms. Environ Sci Technol 2011, 45:8444-8451.
    • (2011) Environ Sci Technol , vol.45 , pp. 8444-8451
    • Aulenta, F.1    Tocca, L.2    Verdini, R.3    Reale, P.4    Majone, M.5
  • 10
    • 79955626549 scopus 로고    scopus 로고
    • Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization
    • Bakhshian S., Kariminia H.-R., Roshandel R. Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization. Bioresour Technol 2011, 102:6761-6765.
    • (2011) Bioresour Technol , vol.102 , pp. 6761-6765
    • Bakhshian, S.1    Kariminia, H.-R.2    Roshandel, R.3
  • 11
    • 22544463929 scopus 로고    scopus 로고
    • Identification, characterization, and classification of genes encoding perchlorate reductase
    • Bender K.S., Shang C., Chakraborty R., Belchik S.M., Coates J.D., Achenbach L.A. Identification, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol 2005, 187:5090-5096.
    • (2005) J Bacteriol , vol.187 , pp. 5090-5096
    • Bender, K.S.1    Shang, C.2    Chakraborty, R.3    Belchik, S.M.4    Coates, J.D.5    Achenbach, L.A.6
  • 13
    • 77951881005 scopus 로고    scopus 로고
    • Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell
    • Cao Y., Hu Y., Sun J., Hou B. Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell. Bioelectrochemistry 2010, 79:71-76.
    • (2010) Bioelectrochemistry , vol.79 , pp. 71-76
    • Cao, Y.1    Hu, Y.2    Sun, J.3    Hou, B.4
  • 14
    • 41949138698 scopus 로고    scopus 로고
    • Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells
    • Catal T., Fan Y., Li K., Bermek H., Liu H. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells. J Power Sources 2008, 180:162-166.
    • (2008) J Power Sources , vol.180 , pp. 162-166
    • Catal, T.1    Fan, Y.2    Li, K.3    Bermek, H.4    Liu, H.5
  • 15
    • 69849103522 scopus 로고    scopus 로고
    • Removal of selenite from wastewater using microbial fuel cells
    • Catal T., Bermek H., Liu H. Removal of selenite from wastewater using microbial fuel cells. Biotechnol Lett 2009, 31:1211-1216.
    • (2009) Biotechnol Lett , vol.31 , pp. 1211-1216
    • Catal, T.1    Bermek, H.2    Liu, H.3
  • 16
    • 84858279627 scopus 로고    scopus 로고
    • Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration
    • Chandrasekhar K., Mohan S.V. Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration. Bioresour Technol 2012, 110:517-525.
    • (2012) Bioresour Technol , vol.110 , pp. 517-525
    • Chandrasekhar, K.1    Mohan, S.V.2
  • 17
    • 77649335841 scopus 로고    scopus 로고
    • Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri
    • Chen B.-Y., Zhang M., Chang C., Ding Y., Lin K.-L., Chiou C.-S., et al. Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri. Bioresour Technol 2010, 101:4737-4741.
    • (2010) Bioresour Technol , vol.101 , pp. 4737-4741
    • Chen, B.-Y.1    Zhang, M.2    Chang, C.3    Ding, Y.4    Lin, K.-L.5    Chiou, C.-S.6
  • 18
    • 84897478651 scopus 로고    scopus 로고
    • Substrates and pathway of electricity generation in a nitrification-based microbial fuel cell
    • Chen H., Zheng P., Zhang J., Xie Z., Ji J., Ghulam A. Substrates and pathway of electricity generation in a nitrification-based microbial fuel cell. Bioresour Technol 2014, 161:208-214.
    • (2014) Bioresour Technol , vol.161 , pp. 208-214
    • Chen, H.1    Zheng, P.2    Zhang, J.3    Xie, Z.4    Ji, J.5    Ghulam, A.6
  • 19
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • Cheng S., Xing D., Call D.F., Logan B.E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 2009, 43:3953-3958.
    • (2009) Environ Sci Technol , vol.43 , pp. 3953-3958
    • Cheng, S.1    Xing, D.2    Call, D.F.3    Logan, B.E.4
  • 20
    • 75349088069 scopus 로고    scopus 로고
    • Anodophilic biofilm catalyzes cathodic oxygen reduction
    • Cheng K.Y., Ho G., Cord-Ruwisch R. Anodophilic biofilm catalyzes cathodic oxygen reduction. Environ Sci Technol 2010, 44:518-525.
    • (2010) Environ Sci Technol , vol.44 , pp. 518-525
    • Cheng, K.Y.1    Ho, G.2    Cord-Ruwisch, R.3
  • 21
    • 84856583214 scopus 로고    scopus 로고
    • Recovery of silver from wastewater coupled with power generation using a microbial fuel cell
    • Choi C., Cui Y. Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour Technol 2012, 107:522-525.
    • (2012) Bioresour Technol , vol.107 , pp. 522-525
    • Choi, C.1    Cui, Y.2
  • 22
    • 84874707527 scopus 로고    scopus 로고
    • The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell
    • Choi C., Hu N. The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresour Technol 2013, 133:589-598.
    • (2013) Bioresour Technol , vol.133 , pp. 589-598
    • Choi, C.1    Hu, N.2
  • 24
    • 84856576856 scopus 로고    scopus 로고
    • Phosphate recovery as struvite within a single chamber microbial electrolysis cell
    • Cusick R.D., Logan B.E. Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresour Technol 2012, 107:110-115.
    • (2012) Bioresour Technol , vol.107 , pp. 110-115
    • Cusick, R.D.1    Logan, B.E.2
  • 25
    • 80655134835 scopus 로고    scopus 로고
    • Microbial degradation of petroleum hydrocarbon contaminants: an overview
    • Das N., Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011, 2011:1-13.
    • (2011) Biotechnol Res Int , vol.2011 , pp. 1-13
    • Das, N.1    Chandran, P.2
  • 26
    • 76049122072 scopus 로고    scopus 로고
    • Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode
    • Ding H., Li Y., Lu A., Jin S., Quan C., Wang C., et al. Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresour Technol 2010, 101:3500-3505.
    • (2010) Bioresour Technol , vol.101 , pp. 3500-3505
    • Ding, H.1    Li, Y.2    Lu, A.3    Jin, S.4    Quan, C.5    Wang, C.6
  • 27
    • 79959785045 scopus 로고    scopus 로고
    • From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater
    • Erable B., Etcheverry L., Bergel A. From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater. Biofouling 2011, 27:319-326.
    • (2011) Biofouling , vol.27 , pp. 319-326
    • Erable, B.1    Etcheverry, L.2    Bergel, A.3
  • 28
    • 84880414323 scopus 로고    scopus 로고
    • Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation
    • Fang Z., Song H., Cang N., Li X. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresour Technol 2013, 144:165-171.
    • (2013) Bioresour Technol , vol.144 , pp. 165-171
    • Fang, Z.1    Song, H.2    Cang, N.3    Li, X.4
  • 29
    • 84870532787 scopus 로고    scopus 로고
    • The effect of carbon sources on nitrogen removal performance in bioelectrochemical systems
    • Feng H., Huang B., Zou Y., Li N., Wang M., Yin J., et al. The effect of carbon sources on nitrogen removal performance in bioelectrochemical systems. Bioresour Technol 2013, 128:565-570.
    • (2013) Bioresour Technol , vol.128 , pp. 565-570
    • Feng, H.1    Huang, B.2    Zou, Y.3    Li, N.4    Wang, M.5    Yin, J.6
  • 30
    • 84861330843 scopus 로고    scopus 로고
    • Enhanced bio-decolourisation of acid orange 7 by Shewanella oneidensis through co-metabolism in a microbial fuel cell
    • Fernando E., Keshavarz T., Kyazze G. Enhanced bio-decolourisation of acid orange 7 by Shewanella oneidensis through co-metabolism in a microbial fuel cell. Int Biodeterior Biodegrad 2012, 72:1-9.
    • (2012) Int Biodeterior Biodegrad , vol.72 , pp. 1-9
    • Fernando, E.1    Keshavarz, T.2    Kyazze, G.3
  • 31
    • 79955021072 scopus 로고    scopus 로고
    • Microbial fuel cell enables phosphate recovery form digested sewage sludge as struvite
    • Fischer F., Bastian C., Happe M., Mabillard E., Schmidt N. Microbial fuel cell enables phosphate recovery form digested sewage sludge as struvite. Bioresour Technol 2011, 102:5824-5830.
    • (2011) Bioresour Technol , vol.102 , pp. 5824-5830
    • Fischer, F.1    Bastian, C.2    Happe, M.3    Mabillard, E.4    Schmidt, N.5
  • 32
    • 84896862114 scopus 로고    scopus 로고
    • Augmenting microbial fuel cell power by coupling with supported liquid membrane permeation for zinc recovery
    • Fradler K.R., Michie L., Dinsdale R.M., Guwy A.J., Premier G.C. Augmenting microbial fuel cell power by coupling with supported liquid membrane permeation for zinc recovery. Water Res 2014, 55:115-125.
    • (2014) Water Res , vol.55 , pp. 115-125
    • Fradler, K.R.1    Michie, L.2    Dinsdale, R.M.3    Guwy, A.J.4    Premier, G.C.5
  • 34
    • 27744521813 scopus 로고    scopus 로고
    • Remediation and recovery of uranium from contaminated subsurface environments with electrodes
    • Gregory K.B., Lovley D.R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 2005, 39:8943-8947.
    • (2005) Environ Sci Technol , vol.39 , pp. 8943-8947
    • Gregory, K.B.1    Lovley, D.R.2
  • 36
    • 79955561175 scopus 로고    scopus 로고
    • Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation
    • Hou B., Sun J., Hu Y. Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation. Appl Microbiol Biotechnol 2011, 90:1563-1572.
    • (2011) Appl Microbiol Biotechnol , vol.90 , pp. 1563-1572
    • Hou, B.1    Sun, J.2    Hu, Y.3
  • 37
    • 79551682674 scopus 로고    scopus 로고
    • Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes
    • Hou B., Sun J., Hu Y. Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes. Bioresour Technol 2011, 102:4433-4438.
    • (2011) Bioresour Technol , vol.102 , pp. 4433-4438
    • Hou, B.1    Sun, J.2    Hu, Y.3
  • 38
    • 84858750126 scopus 로고    scopus 로고
    • Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation
    • Hou B., Hu Y., Sun J. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation. Bioresour Technol 2012, 111:105-110.
    • (2012) Bioresour Technol , vol.111 , pp. 105-110
    • Hou, B.1    Hu, Y.2    Sun, J.3
  • 39
    • 84929514056 scopus 로고    scopus 로고
    • http://www.publicintegrity.org/2011/02/22/2121/epa-superfund-cleanup-costs-outstrip-funding.
  • 40
    • 77958092093 scopus 로고    scopus 로고
    • Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell
    • Huang L., Chen J., Quan X., Yang F. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess Biosyst Eng 2010, 33:937-945.
    • (2010) Bioprocess Biosyst Eng , vol.33 , pp. 937-945
    • Huang, L.1    Chen, J.2    Quan, X.3    Yang, F.4
  • 41
    • 80051842699 scopus 로고    scopus 로고
    • Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell
    • Huang D., Zhou S., Chen Q., Zhao B., Yuan Y., Zhuang L. Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chem Eng J 2011, 172:647-653.
    • (2011) Chem Eng J , vol.172 , pp. 647-653
    • Huang, D.1    Zhou, S.2    Chen, Q.3    Zhao, B.4    Yuan, Y.5    Zhuang, L.6
  • 42
    • 79957832698 scopus 로고    scopus 로고
    • Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells
    • Huang L., Chai X., Chen G., Logan B.E. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ Sci Technol 2011, 45:5025-5031.
    • (2011) Environ Sci Technol , vol.45 , pp. 5025-5031
    • Huang, L.1    Chai, X.2    Chen, G.3    Logan, B.E.4
  • 43
    • 78650512558 scopus 로고    scopus 로고
    • Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation
    • Huang L., Chai X., Cheng S., Chen G. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chem Eng J 2011, 166:652-661.
    • (2011) Chem Eng J , vol.166 , pp. 652-661
    • Huang, L.1    Chai, X.2    Cheng, S.3    Chen, G.4
  • 45
    • 82755193768 scopus 로고    scopus 로고
    • Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation
    • Kalathil S., Lee J., Cho M.H. Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. N Biotechnol 2011, 29:32-37.
    • (2011) N Biotechnol , vol.29 , pp. 32-37
    • Kalathil, S.1    Lee, J.2    Cho, M.H.3
  • 46
    • 84892486205 scopus 로고    scopus 로고
    • Nutrients removal and recovery in bioelectrochemical systems: a review
    • Kelly P.T., He Z. Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 2014, 153:351-360.
    • (2014) Bioresour Technol , vol.153 , pp. 351-360
    • Kelly, P.T.1    He, Z.2
  • 47
    • 84880595555 scopus 로고    scopus 로고
    • Improved azo dye decolorization in a modified sleeve-type bioelectrochemical system
    • Kong F., Wang A., Liang B., Liu W., Cheng H. Improved azo dye decolorization in a modified sleeve-type bioelectrochemical system. Bioresour Technol 2013, 143:669-673.
    • (2013) Bioresour Technol , vol.143 , pp. 669-673
    • Kong, F.1    Wang, A.2    Liang, B.3    Liu, W.4    Cheng, H.5
  • 48
    • 84897636074 scopus 로고    scopus 로고
    • Improved dechlorination and mineralization of 4-chlorophenol in a sequential biocathode-bioanode bioelectrochemical system with mixed photosynthetic bacteria
    • Kong F., Wang A., Ren H.-Y., Huang L., Xu M., Tao H. Improved dechlorination and mineralization of 4-chlorophenol in a sequential biocathode-bioanode bioelectrochemical system with mixed photosynthetic bacteria. Bioresour Technol 2014, 158:32-38.
    • (2014) Bioresour Technol , vol.158 , pp. 32-38
    • Kong, F.1    Wang, A.2    Ren, H.-Y.3    Huang, L.4    Xu, M.5    Tao, H.6
  • 49
    • 84868299734 scopus 로고    scopus 로고
    • Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells
    • Kumru M., Eren H., Catal T., Bermek H., Akarsubaşi A.T. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells. Environ Technol 2012, 33:2167-2175.
    • (2012) Environ Technol , vol.33 , pp. 2167-2175
    • Kumru, M.1    Eren, H.2    Catal, T.3    Bermek, H.4    Akarsubaşi, A.T.5
  • 50
    • 0025180428 scopus 로고
    • Microbial degradation of hydrocarbons in the environment
    • Leahy J.G., Colwell R.R. Microbial degradation of hydrocarbons in the environment. Microbiol Rev 1990, 54:305-315.
    • (1990) Microbiol Rev , vol.54 , pp. 305-315
    • Leahy, J.G.1    Colwell, R.R.2
  • 51
    • 53549133386 scopus 로고    scopus 로고
    • A microbial fuel cell equipped with a biocathode for organic removal and denitrification
    • Lefebvre O., Al-Mamun A., Ng H.Y. A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci Technol 2008, 58:881-885.
    • (2008) Water Sci Technol , vol.58 , pp. 881-885
    • Lefebvre, O.1    Al-Mamun, A.2    Ng, H.Y.3
  • 52
    • 84922863309 scopus 로고    scopus 로고
    • Stimulating sediment bioremediation with benthic microbial fuel cells
    • Li W., Yu H. Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnol Adv 2015, 33:1-12.
    • (2015) Biotechnol Adv , vol.33 , pp. 1-12
    • Li, W.1    Yu, H.2
  • 54
    • 67649494273 scopus 로고    scopus 로고
    • Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells
    • Li Y., Lu A., Ding H., Jin S., Yan Y., Wang C., et al. Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochem Commun 2009, 11:1496-1499.
    • (2009) Electrochem Commun , vol.11 , pp. 1496-1499
    • Li, Y.1    Lu, A.2    Ding, H.3    Jin, S.4    Yan, Y.5    Wang, C.6
  • 55
    • 76749141878 scopus 로고    scopus 로고
    • Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactants
    • Li J., Liu G., Zhang R., Luo Y., Zhang C., Li M. Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactants. Bioresour Technol 2010, 101:4013-4020.
    • (2010) Bioresour Technol , vol.101 , pp. 4013-4020
    • Li, J.1    Liu, G.2    Zhang, R.3    Luo, Y.4    Zhang, C.5    Li, M.6
  • 56
    • 77649338598 scopus 로고    scopus 로고
    • Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system
    • Li Z., Zhang X., Lin J., Han S., Lei L. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system. Bioresour Technol 2010, 101:4440-4445.
    • (2010) Bioresour Technol , vol.101 , pp. 4440-4445
    • Li, Z.1    Zhang, X.2    Lin, J.3    Han, S.4    Lei, L.5
  • 57
    • 84912016337 scopus 로고    scopus 로고
    • Extended petroleum hydrocarbon bioremediation in saline soil using Pt-free multianodes microbial fuel cells
    • Li X., Wang X., Zhang Y., Cheng L., Liu J., Li F., et al. Extended petroleum hydrocarbon bioremediation in saline soil using Pt-free multianodes microbial fuel cells. RSC Adv 2014, 4:59803-59808.
    • (2014) RSC Adv , vol.4 , pp. 59803-59808
    • Li, X.1    Wang, X.2    Zhang, Y.3    Cheng, L.4    Liu, J.5    Li, F.6
  • 58
    • 73349087516 scopus 로고    scopus 로고
    • Microbial fuel cell with an azo-dye-feeding cathode
    • Liu L., Li F., Feng C., Li X. Microbial fuel cell with an azo-dye-feeding cathode. Appl Microbiol Biotechnol 2009, 85:175-183.
    • (2009) Appl Microbiol Biotechnol , vol.85 , pp. 175-183
    • Liu, L.1    Li, F.2    Feng, C.3    Li, X.4
  • 59
    • 78651089116 scopus 로고    scopus 로고
    • Enhanced reductive degradation of methyl orange in a microbial fuel cell through cathode modification with redox mediators
    • Liu R., Sheng G., Sun M., Zang G., Li W., Tong Z., et al. Enhanced reductive degradation of methyl orange in a microbial fuel cell through cathode modification with redox mediators. Appl Microbiol Biotechnol 2011, 89:201-208.
    • (2011) Appl Microbiol Biotechnol , vol.89 , pp. 201-208
    • Liu, R.1    Sheng, G.2    Sun, M.3    Zang, G.4    Li, W.5    Tong, Z.6
  • 60
    • 0035576907 scopus 로고    scopus 로고
    • Assessing the outlook for perchlorate remediation
    • Logan B.E. Assessing the outlook for perchlorate remediation. Environ Sci Technol 2001, 35:482A-487A.
    • (2001) Environ Sci Technol , vol.35 , pp. 482A-487A
    • Logan, B.E.1
  • 61
    • 84864831407 scopus 로고    scopus 로고
    • Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
    • Logan B.E., Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337:686-690.
    • (2012) Science , vol.337 , pp. 686-690
    • Logan, B.E.1    Rabaey, K.2
  • 63
    • 70349120807 scopus 로고    scopus 로고
    • Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation
    • Lohner S.T., Tiehm A. Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation. Environ Sci Technol 2009, 43:7098-7104.
    • (2009) Environ Sci Technol , vol.43 , pp. 7098-7104
    • Lohner, S.T.1    Tiehm, A.2
  • 64
    • 79960943395 scopus 로고    scopus 로고
    • Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process
    • Lohner S.T., Becker D., Mangold K.-M., Tiehm A. Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process. Environ Sci Technol 2011, 45:6491-6497.
    • (2011) Environ Sci Technol , vol.45 , pp. 6491-6497
    • Lohner, S.T.1    Becker, D.2    Mangold, K.-M.3    Tiehm, A.4
  • 65
    • 33744906766 scopus 로고    scopus 로고
    • Microbial fuel cells: novel microbial physiologies and engineering approaches
    • Lovley D.R. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 2006, 17:327-332.
    • (2006) Curr Opin Biotechnol , vol.17 , pp. 327-332
    • Lovley, D.R.1
  • 66
    • 82555168002 scopus 로고    scopus 로고
    • Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination
    • Lovley D.R. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 2011, 4:4896-4906.
    • (2011) Energy Environ Sci , vol.4 , pp. 4896-4906
    • Lovley, D.R.1
  • 67
    • 79958010826 scopus 로고    scopus 로고
    • A shift in the current: new applications and concepts for microbe-electrode electron exchange
    • Lovley D.R., Nevin K.P. A shift in the current: new applications and concepts for microbe-electrode electron exchange. Curr Opin Biotechnol 2011, 22:441-448.
    • (2011) Curr Opin Biotechnol , vol.22 , pp. 441-448
    • Lovley, D.R.1    Nevin, K.P.2
  • 68
    • 84897549733 scopus 로고    scopus 로고
    • Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil
    • Lu L., Huggins T., Jin S., Zuo Y., Ren Z.J. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Technol 2014, 48:4021-4029.
    • (2014) Environ Sci Technol , vol.48 , pp. 4021-4029
    • Lu, L.1    Huggins, T.2    Jin, S.3    Zuo, Y.4    Ren, Z.J.5
  • 69
    • 84899110977 scopus 로고    scopus 로고
    • Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems
    • Lu L., Yazdi H., Jin S., Zuo Y., Fallgren P.H., Ren Z.J. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems. J Hazard Mater 2014, 274:8-15.
    • (2014) J Hazard Mater , vol.274 , pp. 8-15
    • Lu, L.1    Yazdi, H.2    Jin, S.3    Zuo, Y.4    Fallgren, P.H.5    Ren, Z.J.6
  • 70
    • 60649098955 scopus 로고    scopus 로고
    • Phenol degradation in microbial fuel cells
    • Luo H., Liu G., Zhang R., Jin S. Phenol degradation in microbial fuel cells. Chem Eng J 2009, 147:259-264.
    • (2009) Chem Eng J , vol.147 , pp. 259-264
    • Luo, H.1    Liu, G.2    Zhang, R.3    Jin, S.4
  • 71
    • 69349099320 scopus 로고    scopus 로고
    • Power generation from furfural using the microbial fuel cell
    • Luo Y., Liu G., Zhang R., Zhang C. Power generation from furfural using the microbial fuel cell. J Power Sources 2010, 195:190-194.
    • (2010) J Power Sources , vol.195 , pp. 190-194
    • Luo, Y.1    Liu, G.2    Zhang, R.3    Zhang, C.4
  • 72
    • 78651484675 scopus 로고    scopus 로고
    • Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell
    • Luo Y., Zhang R., Liu G., Li J., Qin B., Li M., et al. Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell. Bioresour Technol 2011, 102:3827-3832.
    • (2011) Bioresour Technol , vol.102 , pp. 3827-3832
    • Luo, Y.1    Zhang, R.2    Liu, G.3    Li, J.4    Qin, B.5    Li, M.6
  • 73
    • 84897669375 scopus 로고    scopus 로고
    • 2 production from artificial acid mine drainage using the microbial electrolysis cell
    • 2 production from artificial acid mine drainage using the microbial electrolysis cell. J Hazard Mater 2014, 270:153-159.
    • (2014) J Hazard Mater , vol.270 , pp. 153-159
    • Luo, H.1    Liu, G.2    Zhang, R.3    Bai, Y.4    Fu, S.5    Hou, Y.6
  • 75
    • 84878648156 scopus 로고    scopus 로고
    • Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
    • Marshall C.W., Ross D.E., Fichot E.B., Norman R.S., May H.D. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol 2013, 47:6023-6029.
    • (2013) Environ Sci Technol , vol.47 , pp. 6023-6029
    • Marshall, C.W.1    Ross, D.E.2    Fichot, E.B.3    Norman, R.S.4    May, H.D.5
  • 76
    • 33845740271 scopus 로고    scopus 로고
    • Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2
    • Milliken C.E., May H.D. Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Appl Microbiol Biotechnol 2007, 73:1180-1189.
    • (2007) Appl Microbiol Biotechnol , vol.73 , pp. 1180-1189
    • Milliken, C.E.1    May, H.D.2
  • 77
    • 84865746608 scopus 로고    scopus 로고
    • Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions
    • Modin O., Wang X., Wu X., Rauch S., Fedje K.K. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. J Hazard Mater 2012, 235-236:291-297.
    • (2012) J Hazard Mater , pp. 291-297
    • Modin, O.1    Wang, X.2    Wu, X.3    Rauch, S.4    Fedje, K.K.5
  • 78
    • 80052734731 scopus 로고    scopus 로고
    • Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation
    • Mohan S.V., Chandrasekhar K. Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresour Technol 2011, 102:9532-9541.
    • (2011) Bioresour Technol , vol.102 , pp. 9532-9541
    • Mohan, S.V.1    Chandrasekhar, K.2
  • 79
    • 37549048654 scopus 로고    scopus 로고
    • Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater
    • Morris J.M., Jin S. Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. J Environ Sci Health A Tox Hazard Subst Environ Eng 2008, 43:18-23.
    • (2008) J Environ Sci Health A Tox Hazard Subst Environ Eng , vol.43 , pp. 18-23
    • Morris, J.M.1    Jin, S.2
  • 80
    • 84858341131 scopus 로고    scopus 로고
    • Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells
    • Morris J.M., Jin S. Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J Hazard Mater 2012, 213-214:474-477.
    • (2012) J Hazard Mater , pp. 474-477
    • Morris, J.M.1    Jin, S.2
  • 81
    • 67651123178 scopus 로고    scopus 로고
    • Enhanced denitrification through microbial and steel fuel-cell generated electron transport
    • Morris J.M., Fallgren P.H., Jin S. Enhanced denitrification through microbial and steel fuel-cell generated electron transport. Chem Eng J 2009, 153:37-42.
    • (2009) Chem Eng J , vol.153 , pp. 37-42
    • Morris, J.M.1    Fallgren, P.H.2    Jin, S.3
  • 82
    • 57349153557 scopus 로고    scopus 로고
    • Microbial fuel cell in enhancing anaerobic biodegradation of diesel
    • Morris J.M., Jin S., Crimi B., Pruden A. Microbial fuel cell in enhancing anaerobic biodegradation of diesel. Chem Eng J 2009, 146:161-167.
    • (2009) Chem Eng J , vol.146 , pp. 161-167
    • Morris, J.M.1    Jin, S.2    Crimi, B.3    Pruden, A.4
  • 85
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • Nevin K.P., Woodard T.L., Franks A.E., Summers Z.M., Lovley D.R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 2010, 1:e00103-e00110.
    • (2010) mBio , vol.1 , pp. e00103-e00110
    • Nevin, K.P.1    Woodard, T.L.2    Franks, A.E.3    Summers, Z.M.4    Lovley, D.R.5
  • 86
    • 79955675417 scopus 로고    scopus 로고
    • Electrosynthesis of organic compounds from carbon dioxide Is catalyzed by a diversity of acetogenic microorganisms
    • Nevin K.P., Hensley S.A., Franks A.E., Summers Z.M., Ou J., Woodard T.L., et al. Electrosynthesis of organic compounds from carbon dioxide Is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 2011, 77:2882-2886.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 2882-2886
    • Nevin, K.P.1    Hensley, S.A.2    Franks, A.E.3    Summers, Z.M.4    Ou, J.5    Woodard, T.L.6
  • 87
    • 84867312728 scopus 로고    scopus 로고
    • Decolorization of an azo dye Orange G in microbial fuel cells using Fe(II)-EDTA catalyzed persulfate
    • Niu C., Wang Y., Zhang X., Zeng G., Huang D., Ruan M., et al. Decolorization of an azo dye Orange G in microbial fuel cells using Fe(II)-EDTA catalyzed persulfate. Bioresour Technol 2012, 126:101-106.
    • (2012) Bioresour Technol , vol.126 , pp. 101-106
    • Niu, C.1    Wang, Y.2    Zhang, X.3    Zeng, G.4    Huang, D.5    Ruan, M.6
  • 88
    • 84907774848 scopus 로고    scopus 로고
    • Bioconcentration of heavy metals in the tissues of nile tilapia (Oreochromis niloticus) and african catfish (Clarias gariepinus) in osun river, south-west, Nigeria
    • Olojo E.A.A., Awoniran R. Bioconcentration of heavy metals in the tissues of nile tilapia (Oreochromis niloticus) and african catfish (Clarias gariepinus) in osun river, south-west, Nigeria. Asian J Pharm Biol Res 2012, 2:117-121.
    • (2012) Asian J Pharm Biol Res , vol.2 , pp. 117-121
    • Olojo, E.A.A.1    Awoniran, R.2
  • 89
    • 0008049769 scopus 로고    scopus 로고
    • Electricity generation in microbial fuel cells using neutral red as an electronophore
    • Park D.H., Zeikus J.G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 2000, 66:1292-1297.
    • (2000) Appl Environ Microbiol , vol.66 , pp. 1292-1297
    • Park, D.H.1    Zeikus, J.G.2
  • 90
    • 66149182888 scopus 로고    scopus 로고
    • Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia
    • Pham H., Boon N., Marzorati M., Verstraete W. Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia. Water Res 2009, 43:2936-2946.
    • (2009) Water Res , vol.43 , pp. 2936-2946
    • Pham, H.1    Boon, N.2    Marzorati, M.3    Verstraete, W.4
  • 92
    • 84865550608 scopus 로고    scopus 로고
    • Nickel ion removal from wastewater using the microbial electrolysis cell
    • Qin B., Luo H., Liu G., Zhang R., Chen S., Hou Y., et al. Nickel ion removal from wastewater using the microbial electrolysis cell. Bioresour Technol 2012, 121:458-461.
    • (2012) Bioresour Technol , vol.121 , pp. 458-461
    • Qin, B.1    Luo, H.2    Liu, G.3    Zhang, R.4    Chen, S.5    Hou, Y.6
  • 93
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis-revisiting the electrical route for microbial production
    • Rabaey K., Rozendal R.A. Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat Rev Microbiol 2010, 8:706-716.
    • (2010) Nat Rev Microbiol , vol.8 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 94
    • 18344391948 scopus 로고    scopus 로고
    • Microbial phenazine production enhances electron transfer in biofuel cells
    • Rabaey K., Boon N., Höfte M., Verstraete W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 2005, 39:3401-3408.
    • (2005) Environ Sci Technol , vol.39 , pp. 3401-3408
    • Rabaey, K.1    Boon, N.2    Höfte, M.3    Verstraete, W.4
  • 95
    • 79957982062 scopus 로고    scopus 로고
    • Metabolic and practical considerations on microbial electrosynthesis
    • Rabaey K., Girguis P., Nielsen L.K. Metabolic and practical considerations on microbial electrosynthesis. Curr Opin Biotechnol 2011, 22:371-377.
    • (2011) Curr Opin Biotechnol , vol.22 , pp. 371-377
    • Rabaey, K.1    Girguis, P.2    Nielsen, L.K.3
  • 96
  • 98
    • 84929138343 scopus 로고    scopus 로고
    • Chapter 19: the principle and applications of bioelectrochemical systems
    • Springer, V.K. Gupta, M.G. Tuohy (Eds.)
    • Ren Z. Chapter 19: the principle and applications of bioelectrochemical systems. Biofuel Technol 2013, 501-527. Springer. V.K. Gupta, M.G. Tuohy (Eds.).
    • (2013) Biofuel Technol , pp. 501-527
    • Ren, Z.1
  • 100
    • 84861864043 scopus 로고    scopus 로고
    • Microbial fuel cells and microbial electrochemistry: into the next century!
    • Schröder U. Microbial fuel cells and microbial electrochemistry: into the next century!. ChemSusChem 2012, 5:959-961.
    • (2012) ChemSusChem , vol.5 , pp. 959-961
    • Schröder, U.1
  • 101
    • 33846464636 scopus 로고    scopus 로고
    • Microbial fuel cels utilising carbohydrates
    • Scott K., Murano C. Microbial fuel cels utilising carbohydrates. J Chem Technol Biotechnol 2007, 82:92-100.
    • (2007) J Chem Technol Biotechnol , vol.82 , pp. 92-100
    • Scott, K.1    Murano, C.2
  • 103
    • 51649127655 scopus 로고    scopus 로고
    • Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi
    • Strycharz S.M., Woodard T.L., Johnson J.P., Nevin K.P., Sanford R.A., Löffler F.E., et al. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 2008, 74:5943-5947.
    • (2008) Appl Environ Microbiol , vol.74 , pp. 5943-5947
    • Strycharz, S.M.1    Woodard, T.L.2    Johnson, J.P.3    Nevin, K.P.4    Sanford, R.A.5    Löffler, F.E.6
  • 104
    • 78650170320 scopus 로고    scopus 로고
    • Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens
    • Strycharz S.M., Glaven R.H., Coppi M.V., Gannon S.M., Perpetua L.A., Liu A., et al. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 2011, 80:142-150.
    • (2011) Bioelectrochemistry , vol.80 , pp. 142-150
    • Strycharz, S.M.1    Glaven, R.H.2    Coppi, M.V.3    Gannon, S.M.4    Perpetua, L.A.5    Liu, A.6
  • 106
    • 63649085511 scopus 로고    scopus 로고
    • Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell
    • Sun J., Hu Y., Bi Z., Cao Y. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresour Technol 2009, 100:3185-3192.
    • (2009) Bioresour Technol , vol.100 , pp. 3185-3192
    • Sun, J.1    Hu, Y.2    Bi, Z.3    Cao, Y.4
  • 107
    • 84867103681 scopus 로고    scopus 로고
    • Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air-cathode microbial fuel cell
    • Sun J., Li Y., Hu Y., Hou B., Xu Q., Zhang Y., et al. Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air-cathode microbial fuel cell. Biotechnol Lett 2012, 34:2023-2029.
    • (2012) Biotechnol Lett , vol.34 , pp. 2023-2029
    • Sun, J.1    Li, Y.2    Hu, Y.3    Hou, B.4    Xu, Q.5    Zhang, Y.6
  • 108
    • 70350759941 scopus 로고    scopus 로고
    • Biological chromium (VI) reduction in the cathode of a microbial fuel cell
    • Tandukar M., Huber S.J., Onodera T., Pavlostathis S.G. Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 2009, 43:8159-8165.
    • (2009) Environ Sci Technol , vol.43 , pp. 8159-8165
    • Tandukar, M.1    Huber, S.J.2    Onodera, T.3    Pavlostathis, S.G.4
  • 109
    • 84863012754 scopus 로고    scopus 로고
    • A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 1: model development and numerical solution
    • Tang Y., Zhao H., Marcus A.K., Krajmalnik-Brown R., Rittmann B.E. A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 1: model development and numerical solution. Environ Sci Technol 2012, 46:1598-1607.
    • (2012) Environ Sci Technol , vol.46 , pp. 1598-1607
    • Tang, Y.1    Zhao, H.2    Marcus, A.K.3    Krajmalnik-Brown, R.4    Rittmann, B.E.5
  • 110
    • 84863012724 scopus 로고    scopus 로고
    • A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 2: parameter optimization and results and discussion
    • Tang Y., Zhao H., Marcus A.K., Krajmalnik-Brown R., Rittmann B.E. A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 2: parameter optimization and results and discussion. Environ Sci Technol 2012, 46:1608-1615.
    • (2012) Environ Sci Technol , vol.46 , pp. 1608-1615
    • Tang, Y.1    Zhao, H.2    Marcus, A.K.3    Krajmalnik-Brown, R.4    Rittmann, B.E.5
  • 111
    • 79951945873 scopus 로고    scopus 로고
    • A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation
    • Tao H., Li W., Liang M., Xu N., Ni J., Wu W. A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation. Bioresour Technol 2011, 102:4774-4778.
    • (2011) Bioresour Technol , vol.102 , pp. 4774-4778
    • Tao, H.1    Li, W.2    Liang, M.3    Xu, N.4    Ni, J.5    Wu, W.6
  • 112
    • 79953770230 scopus 로고    scopus 로고
    • Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell
    • Tao H., Liang M., Li W., Zhang L., Ni J., Wu W. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. J Hazard Mater 2011, 189:186-192.
    • (2011) J Hazard Mater , vol.189 , pp. 186-192
    • Tao, H.1    Liang, M.2    Li, W.3    Zhang, L.4    Ni, J.5    Wu, W.6
  • 113
    • 80054836544 scopus 로고    scopus 로고
    • Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor
    • Tao H., Zhang L., Gao Z., Wu W. Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor. Bioresour Technol 2011, 102:10334-10339.
    • (2011) Bioresour Technol , vol.102 , pp. 10334-10339
    • Tao, H.1    Zhang, L.2    Gao, Z.3    Wu, W.4
  • 114
    • 84862795873 scopus 로고    scopus 로고
    • Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors
    • Tao H., Gao Z., Ding H., Xu N., Wu W. Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors. Bioresour Technol 2012, 111:92-97.
    • (2012) Bioresour Technol , vol.111 , pp. 92-97
    • Tao, H.1    Gao, Z.2    Ding, H.3    Xu, N.4    Wu, W.5
  • 115
    • 44449129578 scopus 로고    scopus 로고
    • Review: direct and indirect electrical stimulation of microbial metabolism
    • Thrash J.C., Coates J.D. Review: direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol 2008, 42:3921-3931.
    • (2008) Environ Sci Technol , vol.42 , pp. 3921-3931
    • Thrash, J.C.1    Coates, J.D.2
  • 117
    • 0021799472 scopus 로고
    • Glucose metabolism in a microbial fuel cell stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields
    • Thurston C.F., Bennetto H.P., Delaney G.M., Mason J.R., Roller S.D., Stirling J.L. Glucose metabolism in a microbial fuel cell stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J Gen Microbiol 1985, 131:1391-1401.
    • (1985) J Gen Microbiol , vol.131 , pp. 1391-1401
    • Thurston, C.F.1    Bennetto, H.P.2    Delaney, G.M.3    Mason, J.R.4    Roller, S.D.5    Stirling, J.L.6
  • 118
    • 84884963828 scopus 로고    scopus 로고
    • Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system
    • Tong Y., He Z. Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system. J Hazard Mater 2013, 262:614-619.
    • (2013) J Hazard Mater , vol.262 , pp. 614-619
    • Tong, Y.1    He, Z.2
  • 119
    • 84894283368 scopus 로고    scopus 로고
    • Current-driven nitrate migration out of groundwater by using a bioelectrochemical system
    • Tong Y., He Z. Current-driven nitrate migration out of groundwater by using a bioelectrochemical system. RSC Adv 2014, 4:10290-10294.
    • (2014) RSC Adv , vol.4 , pp. 10290-10294
    • Tong, Y.1    He, Z.2
  • 120
    • 79952186054 scopus 로고    scopus 로고
    • Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes
    • Tyagi M., Fonseca MMRd, Carvalho CCCRd Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 2011, 22:231-241.
    • (2011) Biodegradation , vol.22 , pp. 231-241
    • Tyagi, M.1    Fonseca, M.2    Carvalho, C.3
  • 122
    • 44749085795 scopus 로고    scopus 로고
    • Microbial fuel cells for simultaneous carbon and nitrogen removal
    • Virdis B., Rabaey K., Yuan Z., Keller J. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 2008, 42:3013-3024.
    • (2008) Water Res , vol.42 , pp. 3013-3024
    • Virdis, B.1    Rabaey, K.2    Yuan, Z.3    Keller, J.4
  • 123
    • 67649946783 scopus 로고    scopus 로고
    • Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal
    • Virdis B., Rabaey K., Yuan Z., Rozendal R.A., Keller Jr Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal. Environ Sci Technol 2009, 43:5144-5149.
    • (2009) Environ Sci Technol , vol.43 , pp. 5144-5149
    • Virdis, B.1    Rabaey, K.2    Yuan, Z.3    Rozendal, R.A.4    Keller, J.5
  • 124
    • 77950927558 scopus 로고    scopus 로고
    • Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells
    • Virdis B., Rabaey K., Rozendal R.A., Yuan Z., Keller J. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 2010, 44:2970-2980.
    • (2010) Water Res , vol.44 , pp. 2970-2980
    • Virdis, B.1    Rabaey, K.2    Rozendal, R.A.3    Yuan, Z.4    Keller, J.5
  • 125
    • 84888015677 scopus 로고    scopus 로고
    • A comprehensive review of microbial electrochemical systems as a platform technology
    • Wang H., Ren Z.J. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 2013, 31:1796-1807.
    • (2013) Biotechnol Adv , vol.31 , pp. 1796-1807
    • Wang, H.1    Ren, Z.J.2
  • 126
    • 84907803899 scopus 로고    scopus 로고
    • Bioelectrochemical metal recovery from wastewater: a review
    • Wang H., Ren Z.J. Bioelectrochemical metal recovery from wastewater: a review. Water Res 2014, 66:219-232.
    • (2014) Water Res , vol.66 , pp. 219-232
    • Wang, H.1    Ren, Z.J.2
  • 127
    • 52449101935 scopus 로고    scopus 로고
    • Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells
    • Wang G., Huang L., Zhang Y. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 2008, 30:1959-1966.
    • (2008) Biotechnol Lett , vol.30 , pp. 1959-1966
    • Wang, G.1    Huang, L.2    Zhang, Y.3
  • 128
    • 77953534552 scopus 로고    scopus 로고
    • Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs)
    • Wang X., Feng Y., Liu J., Lee H., Li C., Li N., et al. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron 2010, 25:2639-2643.
    • (2010) Biosens Bioelectron , vol.25 , pp. 2639-2643
    • Wang, X.1    Feng, Y.2    Liu, J.3    Lee, H.4    Li, C.5    Li, N.6
  • 130
    • 82355163525 scopus 로고    scopus 로고
    • Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode
    • Wang A., Cheng H., Liang B., Ren N., Cui D., Lin N., et al. Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environ Sci Technol 2011, 45:10186-10193.
    • (2011) Environ Sci Technol , vol.45 , pp. 10186-10193
    • Wang, A.1    Cheng, H.2    Liang, B.3    Ren, N.4    Cui, D.5    Lin, N.6
  • 131
    • 79955016287 scopus 로고    scopus 로고
    • 2+ as an electron acceptor coupled with power generation using a microbial fuel cell
    • 2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresour Technol 2011, 102:6304-6307.
    • (2011) Bioresour Technol , vol.102 , pp. 6304-6307
    • Wang, Z.1    Lim, B.2    Choi, C.3
  • 132
    • 84860449074 scopus 로고    scopus 로고
    • Active energy harvesting from microbial fuel cells at the maximum power point without using resistors
    • Wang H., Park J.-D., Ren Z. Active energy harvesting from microbial fuel cells at the maximum power point without using resistors. Environ Sci Technol 2012, 46:5247-5252.
    • (2012) Environ Sci Technol , vol.46 , pp. 5247-5252
    • Wang, H.1    Park, J.-D.2    Ren, Z.3
  • 133
    • 83555173531 scopus 로고    scopus 로고
    • Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells
    • Wang X., Cai Z., Zhou Q., Zhang Z., Chen C. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Biotechnol Bioeng 2012, 109:426-433.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 426-433
    • Wang, X.1    Cai, Z.2    Zhou, Q.3    Zhang, Z.4    Chen, C.5
  • 134
    • 84923576364 scopus 로고    scopus 로고
    • Removal mechanisms of trace organic compounds in microbial fuel cells
    • Wang H., Heil D., Ren Z.J., Xu P. Removal mechanisms of trace organic compounds in microbial fuel cells. Chemosphere 2015, 125:94-101.
    • (2015) Chemosphere , vol.125 , pp. 94-101
    • Wang, H.1    Heil, D.2    Ren, Z.J.3    Xu, P.4
  • 135
    • 84925012687 scopus 로고    scopus 로고
    • Practical energy harvesting for microbial fuel cells: a review
    • Wang H., Park J.-D., Ren Z.J. Practical energy harvesting for microbial fuel cells: a review. Environ Sci Technol 2015, 49:3267-3277.
    • (2015) Environ Sci Technol , vol.49 , pp. 3267-3277
    • Wang, H.1    Park, J.-D.2    Ren, Z.J.3
  • 136
    • 84921982782 scopus 로고    scopus 로고
    • Attenuation of trace organic compounds (TOrCs) in bioelectrochemical systems
    • Werner C.M., Hoppe-Jones C., Saikaly P.E., Logan B.E., Amy G.L. Attenuation of trace organic compounds (TOrCs) in bioelectrochemical systems. Water Res 2015, 73:56-67.
    • (2015) Water Res , vol.73 , pp. 56-67
    • Werner, C.M.1    Hoppe-Jones, C.2    Saikaly, P.E.3    Logan, B.E.4    Amy, G.L.5
  • 137
    • 75349109600 scopus 로고    scopus 로고
    • An electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation
    • Williams K.H., Nevin K.P., Franks A., Englert A., Long P.E., Lovley D.R. An electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation. Environ Sci Technol 2010, 44:47-54.
    • (2010) Environ Sci Technol , vol.44 , pp. 47-54
    • Williams, K.H.1    Nevin, K.P.2    Franks, A.3    Englert, A.4    Long, P.E.5    Lovley, D.R.6
  • 138
    • 84883012922 scopus 로고    scopus 로고
    • Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor
    • Wu X., Modin O. Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor. Bioresour Technol 2013, 146:530-536.
    • (2013) Bioresour Technol , vol.146 , pp. 530-536
    • Wu, X.1    Modin, O.2
  • 139
    • 84875872031 scopus 로고    scopus 로고
    • Generation of power by microbial fuel cell with ferricyanide in biodegradation of benzene
    • Wu C.-H., Lai C.-Y., Lin C.-W., Kao M.-H. Generation of power by microbial fuel cell with ferricyanide in biodegradation of benzene. CLEAN Soil Air Water 2013, 41:390-395.
    • (2013) CLEAN Soil Air Water , vol.41 , pp. 390-395
    • Wu, C.-H.1    Lai, C.-Y.2    Lin, C.-W.3    Kao, M.-H.4
  • 140
    • 84867910276 scopus 로고    scopus 로고
    • Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production
    • Xiao L., Young E.B., Berges J.A., He Z. Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environ Sci Technol 2012, 46:11459-11466.
    • (2012) Environ Sci Technol , vol.46 , pp. 11459-11466
    • Xiao, L.1    Young, E.B.2    Berges, J.A.3    He, Z.4
  • 141
    • 84883410204 scopus 로고    scopus 로고
    • Arsenite removal from aqueous solution by a microbial fuel cell-zerovalent iron hybrid process
    • Xue A., Shen Z., Zhao B., Zhao H. Arsenite removal from aqueous solution by a microbial fuel cell-zerovalent iron hybrid process. J Hazard Mater 2013, 261:621-627.
    • (2013) J Hazard Mater , vol.261 , pp. 621-627
    • Xue, A.1    Shen, Z.2    Zhao, B.3    Zhao, H.4
  • 142
    • 84879209818 scopus 로고    scopus 로고
    • Electrosorption driven by microbial fuel cells without electric grid energy consumption for simultaneous phenol removal and wastewater treatment
    • Yang J., Zhao Y., Zhang C., Hu Y., Zhou M. Electrosorption driven by microbial fuel cells without electric grid energy consumption for simultaneous phenol removal and wastewater treatment. Electrochem Commun 2013, 34:121-124.
    • (2013) Electrochem Commun , vol.34 , pp. 121-124
    • Yang, J.1    Zhao, Y.2    Zhang, C.3    Hu, Y.4    Zhou, M.5
  • 143
    • 84886607529 scopus 로고    scopus 로고
    • Electrosorption driven by microbial fuel cells to remove phenol without external power supply
    • Yang J., Zhou M., Zhao Y., Zhang C., Hu Y. Electrosorption driven by microbial fuel cells to remove phenol without external power supply. Bioresour Technol 2013, 150:271-277.
    • (2013) Bioresour Technol , vol.150 , pp. 271-277
    • Yang, J.1    Zhou, M.2    Zhao, Y.3    Zhang, C.4    Hu, Y.5
  • 144
    • 84929507334 scopus 로고    scopus 로고
    • Research progress of groundwater pollution prevention in China
    • Yin Y., Liu D., Li J., Miao Y., Wu W. Research progress of groundwater pollution prevention in China. Environ Sci Manag 2011, 36:27-30.
    • (2011) Environ Sci Manag , vol.36 , pp. 27-30
    • Yin, Y.1    Liu, D.2    Li, J.3    Miao, Y.4    Wu, W.5
  • 145
    • 77956885291 scopus 로고    scopus 로고
    • A new approach to in situ sediment remediation based on air-cathode microbial fuel cells
    • Yuan Y., Zhou S., Zhuang L. A new approach to in situ sediment remediation based on air-cathode microbial fuel cells. J Soils Sediments 2010, 10:1427-1433.
    • (2010) J Soils Sediments , vol.10 , pp. 1427-1433
    • Yuan, Y.1    Zhou, S.2    Zhuang, L.3
  • 146
    • 84870804733 scopus 로고    scopus 로고
    • Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell
    • Zhang F., He Z. Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell. Process Biochem 2012, 47:2146-2151.
    • (2012) Process Biochem , vol.47 , pp. 2146-2151
    • Zhang, F.1    He, Z.2
  • 147
    • 83555179136 scopus 로고    scopus 로고
    • Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells
    • Zhang F., He Z. Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells. J Chem Technol Biotechnol 2012, 87:153-159.
    • (2012) J Chem Technol Biotechnol , vol.87 , pp. 153-159
    • Zhang, F.1    He, Z.2
  • 148
    • 70449436466 scopus 로고    scopus 로고
    • Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells
    • Zhang B., Zhao H., Shi C., Zhou S. Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells. J Chem Technol Biotechnol 2009, 84:1780-1786.
    • (2009) J Chem Technol Biotechnol , vol.84 , pp. 1780-1786
    • Zhang, B.1    Zhao, H.2    Shi, C.3    Zhou, S.4
  • 149
    • 77954635013 scopus 로고    scopus 로고
    • Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor
    • Zhang T., Gannon S.M., Nevin K.P., Franks A.E., Lovley D.R. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 2010, 12:1011-1020.
    • (2010) Environ Microbiol , vol.12 , pp. 1011-1020
    • Zhang, T.1    Gannon, S.M.2    Nevin, K.P.3    Franks, A.E.4    Lovley, D.R.5
  • 150
    • 84856378316 scopus 로고    scopus 로고
    • Simultaneous reduction of vanadium(V) and chromium(VI) with enhanced energy recovery based on microbial fuel cell technology
    • Zhang B., Feng C., Ni J., Zhang J., Huang W. Simultaneous reduction of vanadium(V) and chromium(VI) with enhanced energy recovery based on microbial fuel cell technology. J Power Sources 2012, 204:34-39.
    • (2012) J Power Sources , vol.204 , pp. 34-39
    • Zhang, B.1    Feng, C.2    Ni, J.3    Zhang, J.4    Huang, W.5
  • 151
    • 84921919637 scopus 로고    scopus 로고
    • Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil
    • Zhang Y., Wang X., Li X., Cheng L., Wan L., Zhou Q. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Pollut Res 2014, 22:2335-2341.
    • (2014) Environ Sci Pollut Res , vol.22 , pp. 2335-2341
    • Zhang, Y.1    Wang, X.2    Li, X.3    Cheng, L.4    Wan, L.5    Zhou, Q.6
  • 152
    • 84919647382 scopus 로고    scopus 로고
    • Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells
    • Zhang B., Tian C., Liu Y., Hao L., Liu Y., Feng C., et al. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells. Bioresour Technol 2015, 179:91-97.
    • (2015) Bioresour Technol , vol.179 , pp. 91-97
    • Zhang, B.1    Tian, C.2    Liu, Y.3    Hao, L.4    Liu, Y.5    Feng, C.6
  • 153
    • 84885152223 scopus 로고    scopus 로고
    • Carbon and electron fluxes during the electricity driven 1, 3-propanediol biosynthesis from glycero
    • Zhou M., Chen J., Freguia S., Rabaey K., Keller J. Carbon and electron fluxes during the electricity driven 1, 3-propanediol biosynthesis from glycero. Environ Sci Technol 2013, 47:11199-11205.
    • (2013) Environ Sci Technol , vol.47 , pp. 11199-11205
    • Zhou, M.1    Chen, J.2    Freguia, S.3    Rabaey, K.4    Keller, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.