메뉴 건너뛰기




Volumn 47, Issue 3, 2015, Pages

Classification framework of MapReduce scheduling algorithms

Author keywords

Bigdata; Distributed computing; Distributed data; Hadoop; MapReduce; Scheduling

Indexed keywords

ALGORITHMS; CLUSTERING ALGORITHMS; DISTRIBUTED COMPUTER SYSTEMS; QUALITY CONTROL; SCHEDULING ALGORITHMS; SURVEYS;

EID: 84929484732     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/2693315     Document Type: Article
Times cited : (58)

References (68)
  • 1
    • 84899759477 scopus 로고    scopus 로고
    • AMAZON, (Sep 2012), Retrieved October, 19 2012, from
    • AMAZON. 2012. Amazon EC2. (Sep 2012). Retrieved October 19, 2012, from http://aws.amazon.com/ec2/.
    • (2012) Amazon EC2.
  • 2
    • 84899925394 scopus 로고    scopus 로고
    • APHIVE. Retrieved June 19 2013, from
    • APHIVE. 2013. Apache HIVE. Retrieved June 19, 2013, from http://hive.apache.org/.
    • (2013) Apache HIVE
  • 3
    • 84929466630 scopus 로고    scopus 로고
    • APPIG. Retrieved June 19, 2013, from
    • APPIG. 2013. Apache Pig. Retrieved June 19, 2013, from http://pig.apache.org/.
    • (2013) Apache Pig
  • 5
    • 84880049538 scopus 로고    scopus 로고
    • Interference and locality-aware task scheduling for MapReduce applications in virtual clusters
    • X. Bu, J. Rao, and C. Z. Xu. 2013. Interference and locality-aware task scheduling for MapReduce applications in virtual clusters. In Proceedings of the HPDC. 227-238.
    • (2013) Proceedings of the HPDC , pp. 227-238
    • Bu, X.1    Rao, J.2    Xu, C.Z.3
  • 6
    • 84861632325 scopus 로고    scopus 로고
    • Joint scheduling of processing and shuffle phases in MapReduce systems
    • F. Chen, M. Kodialam, and T. V. Lakshman. 2012. Joint scheduling of processing and shuffle phases in MapReduce systems. In Proceedings of INFOCOM. 1143-1151.
    • (2012) Proceedings of INFOCOM , pp. 1143-1151
    • Chen, F.1    Kodialam, M.2    Lakshman, T.V.3
  • 7
    • 84886719217 scopus 로고    scopus 로고
    • HAT: History-based auto-tuning MapReduce in heterogeneous environments
    • 2013
    • Q. Chen, M. Guo, Q. Deng, L. Zheng, S. Guo, and Y. Shen. 2013. HAT: History-based auto-tuning MapReduce in heterogeneous environments. The Journal of Supercomputing 64, 3 (2013), 1038-1054.
    • (2013) The Journal of Supercomputing , vol.64 , Issue.3 , pp. 1038-1054
    • Chen, Q.1    Guo, M.2    Deng, Q.3    Zheng, L.4    Guo, S.5    Shen, Y.6
  • 8
    • 78249263228 scopus 로고    scopus 로고
    • SAMR: A self-adaptive MapReduce scheduling algorithm in heterogeneous environment
    • Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo. 2010. SAMR: A self-adaptive MapReduce scheduling algorithm in heterogeneous environment. In Proceedings of CIT. 2736-2743.
    • (2010) Proceedings of CIT , pp. 2736-2743
    • Chen, Q.1    Zhang, D.2    Guo, M.3    Deng, Q.4    Guo, S.5
  • 9
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • 2008
    • J. Dean and S. Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Communications of the ACM 51 (2008), 107-113.
    • (2008) Communications of the ACM , vol.51 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 10
    • 77951434450 scopus 로고    scopus 로고
    • Learning based opportunistic admission control algorithm for MapReduce as a service
    • J. Dhok, N. Maheshwari, and V. Varma. 2010. Learning based opportunistic admission control algorithm for MapReduce as a service. In Proceedings of ISEC. 153-160.
    • (2010) Proceedings of ISEC , pp. 153-160
    • Dhok, J.1    Maheshwari, N.2    Varma, V.3
  • 11
    • 77954896180 scopus 로고    scopus 로고
    • Assigning tasks for efficiency in Hadoop: Extended abstract
    • M. J. Fischer, X. Su, and Y. Yin. 2010. Assigning tasks for efficiency in Hadoop: Extended abstract. In Proceedings of SPAA. 30-39.
    • (2010) Proceedings of SPAA , pp. 30-39
    • Fischer, M.J.1    Su, X.2    Yin, Y.3
  • 13
    • 84903825590 scopus 로고    scopus 로고
    • HADOOP. (September 2012), Retrieved October 2 2012, from
    • HADOOP. 2012. The Apache Hadoop Project. (September 2012). Retrieved October 2, 2012, from http://hadoop.apache.org/docs/r1.2.1/.
    • (2012) The Apache Hadoop Project
  • 14
    • 84866769125 scopus 로고    scopus 로고
    • Center-of-gravity reduce task scheduling to lower MapReduce network traffic
    • M. Hammoud, M. S. Rehman, and M. F. Sakr. 2012. Center-of-gravity reduce task scheduling to lower MapReduce network traffic. In IEEE CLOUD. 49-58.
    • (2012) IEEE CLOUD , pp. 49-58
    • Hammoud, M.1    Rehman, M.S.2    Sakr, M.F.3
  • 16
    • 84929469856 scopus 로고    scopus 로고
    • HDPAPPS. Retrieved April 2014, from
    • HDPAPPS. 2012a. Apache Hadoop YARN. Retrieved April 2014, from http://hadoop.apache.org/docs/current/.
    • (2012) Apache Hadoop YARN
  • 17
    • 84929461398 scopus 로고    scopus 로고
    • HDPAPPS. Retrieved November 19 2012, from
    • HDPAPPS. 2012b. Applications powered by Hadoop. Retrieved November 19, 2012, from http://wiki.apache.org/hadoop/PoweredBy.
    • (2012) Applications Powered by Hadoop
  • 18
    • 84863180724 scopus 로고    scopus 로고
    • Matchmaking: A new MapReduce scheduling technique
    • C. He, Y. Lu, and D. Swanson. 2011. Matchmaking: A new MapReduce scheduling technique. In Proceedings of CloudCom. 40-47.
    • (2011) Proceedings of CloudCom , pp. 40-47
    • He, C.1    Lu, Y.2    Swanson, D.3
  • 23
    • 79961141722 scopus 로고    scopus 로고
    • BAR: An efficient data locality driven task scheduling algorithm for cloud computing
    • J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong. 2011. BAR: An efficient data locality driven task scheduling algorithm for cloud computing. In Proceedings of CCGRID. 295-304.
    • (2011) Proceedings of CCGRID , pp. 295-304
    • Jin, J.1    Luo, J.2    Song, A.3    Dong, F.4    Xiong, R.5
  • 24
    • 79952378269 scopus 로고    scopus 로고
    • Scheduling Hadoop jobs to meet deadlines
    • K. Kc and K. Anyanwu. 2010. Scheduling Hadoop jobs to meet deadlines. In Proceedings of CLOUDCOM. 388-392.
    • (2010) Proceedings of CLOUDCOM , pp. 388-392
    • Kc, K.1    Anyanwu, K.2
  • 26
    • 79957536298 scopus 로고    scopus 로고
    • Energy management for MapReduce clusters
    • 2010
    • W. Lang and J. M. Patel. 2010. Energy management for MapReduce clusters. Proceedings of VLDB Endowment 3, 1-2 (2010), 129-139.
    • (2010) Proceedings of VLDB Endowment , vol.3 , Issue.1-2 , pp. 129-139
    • Lang, W.1    Patel, J.M.2
  • 28
    • 77958131933 scopus 로고    scopus 로고
    • On the energy (in)efficiency of Hadoop clusters
    • 2010
    • J. Leverich and C. Kozyrakis. 2010. On the energy (in)efficiency of Hadoop clusters. SIGOPS Operating Systems Review 44, 1 (2010), 61-65.
    • (2010) SIGOPS Operating Systems Review , vol.44 , Issue.1 , pp. 61-65
    • Leverich, J.1    Kozyrakis, C.2
  • 30
    • 81255205354 scopus 로고    scopus 로고
    • A load-driven task scheduler with adaptive DSC for MapReduce
    • H. Mao, S. Hu, Z. Zhang, L. Xiao, and L. Ruan. 2011. A load-driven task scheduler with adaptive DSC for MapReduce. In Proceedings of GREENCOM. 28-33.
    • (2011) Proceedings of GREENCOM , pp. 28-33
    • Mao, H.1    Hu, S.2    Zhang, Z.3    Xiao, L.4    Ruan, L.5
  • 31
    • 84881071404 scopus 로고    scopus 로고
    • Scaling MapReduce applications across hybrid clouds to meet soft deadlines
    • M. Mattess, R. N. Calheiros, and R. Buyya. 2013. Scaling MapReduce applications across hybrid clouds to meet soft deadlines. In Proceedings of AINA. 629-636.
    • (2013) Proceedings of AINA , pp. 629-636
    • Mattess, M.1    Calheiros, R.N.2    Buyya, R.3
  • 33
    • 84874269807 scopus 로고    scopus 로고
    • A hybrid scheduling algorithm for data intensive workloads in a MapReduce environment
    • P. Nguyen, T. Simon, M. Halem, D. Chapman, and Q. Le. 2012. A hybrid scheduling algorithm for data intensive workloads in a MapReduce environment. In Proceedings of UCC. 161-167.
    • (2012) Proceedings of UCC , pp. 161-167
    • Nguyen, P.1    Simon, T.2    Halem, M.3    Chapman, D.4    Le, Q.5
  • 36
    • 84863886001 scopus 로고    scopus 로고
    • Locality-aware dynamic VM reconfiguration on MapReduce clouds
    • J. Park, D. Lee, B. Kim, J. Huh, and S. Maeng. 2012. Locality-aware dynamic VM reconfiguration on MapReduce clouds. In Proceedings of HPDC. 27-36.
    • (2012) Proceedings of HPDC , pp. 27-36
    • Park, J.1    Lee, D.2    Kim, B.3    Huh, J.4    Maeng, S.5
  • 38
    • 84859942965 scopus 로고    scopus 로고
    • An empirical analysis of scheduling techniques for real-time cloud-based data processing
    • L. T. X. Phan, Z. Zhang, Q. Zheng, B. T. Loo, and I. Lee. 2011. An empirical analysis of scheduling techniques for real-time cloud-based data processing. In Proceedings of SOCA. 1-8.
    • (2011) Proceedings of SOCA , pp. 1-8
    • Phan, L.T.X.1    Zhang, Z.2    Zheng, Q.3    Loo, B.T.4    Lee, I.5
  • 40
    • 84881354193 scopus 로고    scopus 로고
    • Cost-minimizing preemptive scheduling of MapReduce workloads on hybrid clouds
    • X. Qiu, W. L. Yeow, C. Wu, and F. C. M. Lau. 2013. Cost-minimizing preemptive scheduling of MapReduce workloads on hybrid clouds. In Proceedings of IWQoS. 1-6.
    • (2013) Proceedings of IWQoS , pp. 1-6
    • Qiu, X.1    Yeow, W.L.2    Wu, C.3    Lau, F.C.M.4
  • 41
    • 84870575514 scopus 로고    scopus 로고
    • Survey on improved scheduling in Hadoop MapReduce in cloud environments
    • B. T. Rao and L. S. S. Reddy. 2011. Survey on improved scheduling in Hadoop MapReduce in cloud environments. International Journal of Computer Applications 34 (2011), 29-33.
    • (2011) International Journal of Computer Applications , vol.34 , Issue.2011 , pp. 29-33
    • Rao, B.T.1    Reddy, L.S.S.2
  • 42
    • 84865531769 scopus 로고    scopus 로고
    • An adaptive scheduling algorithm for dynamic heterogeneous Hadoop systems
    • A. Rasooli and D. G. Down. 2011. An adaptive scheduling algorithm for dynamic heterogeneous Hadoop systems. In Proceedings of CASCON. 30-44.
    • (2011) Proceedings of CASCON , pp. 30-44
    • Rasooli, A.1    Down, D.G.2
  • 43
    • 84876592013 scopus 로고    scopus 로고
    • A hybrid scheduling approach for scalable heterogeneous Hadoop systems
    • A. Rasooli and D. G. Down. 2012. A hybrid scheduling approach for scalable heterogeneous Hadoop systems. In Proceedings of SCC. 1284-1291.
    • (2012) Proceedings of SCC , pp. 1284-1291
    • Rasooli, A.1    Down, D.G.2
  • 44
    • 78449245097 scopus 로고    scopus 로고
    • Dynamic proportional share scheduling in Hadoop
    • T. Sandholm and K. Lai. 2010. Dynamic proportional share scheduling in Hadoop. In Proceedings of JSSPP. 110-131.
    • (2010) Proceedings of JSSPP , pp. 110-131
    • Sandholm, T.1    Lai, K.2
  • 46
    • 84893230913 scopus 로고    scopus 로고
    • HybridMR: A hierarchical MapReduce scheduler for hybrid data centers
    • B. Sharma, T. Wood, and C. R. Das. 2013. HybridMR: A hierarchical MapReduce scheduler for hybrid data centers. In Proceedings of ICDCS. 102-111.
    • (2013) Proceedings of ICDCS , pp. 102-111
    • Sharma, B.1    Wood, T.2    Das, C.R.3
  • 47
    • 78449286214 scopus 로고    scopus 로고
    • Thermal and power-aware task scheduling for Hadoop based storage centric datacenters
    • B. Shi and A. Srivastava. 2010. Thermal and power-aware task scheduling for Hadoop based storage centric datacenters. In Proceedings of GreenComp. 73-83.
    • (2010) Proceedings of GreenComp , pp. 73-83
    • Shi, B.1    Srivastava, A.2
  • 48
    • 84874095926 scopus 로고    scopus 로고
    • ESAMR: An enhanced self-adaptive MapReduce scheduling algorithm
    • X. Sun, C. He, and Y. Lu. 2012. ESAMR: An enhanced self-adaptive MapReduce scheduling algorithm. In Proceedings of ICPADS. 148-155.
    • (2012) Proceedings of ICPADS , pp. 148-155
    • Sun, X.1    He, C.2    Lu, Y.3
  • 49
    • 84863979278 scopus 로고    scopus 로고
    • Coupling scheduler for Mapreduce/Hadoop
    • J. Tan, X. Meng, and L. Zhang. 2012. Coupling scheduler for Mapreduce/Hadoop. In Proceedings of HPDC. 129-130.
    • (2012) Proceedings of HPDC , pp. 129-130
    • Tan, J.1    Meng, X.2    Zhang, L.3
  • 50
    • 84903998778 scopus 로고    scopus 로고
    • A MapReduce task scheduling algorithm for deadline constraints
    • Springer, Dec 2012
    • Z. Tang, J. Zhou, K. Li, and R. Li. 2012. A MapReduce task scheduling algorithm for deadline constraints. Cluster Computing, Springer (Dec 2012), 1-8.
    • (2012) Cluster Computing , pp. 1-8
    • Tang, Z.1    Zhou, J.2    Li, K.3    Li, R.4
  • 52
    • 72349090439 scopus 로고    scopus 로고
    • A dynamic MapReduce scheduler for heterogeneous workloads
    • C. Tian, H. Zhou, Y. He, and L. Zha. 2009. A dynamic MapReduce scheduler for heterogeneous workloads. In Proceedings of GCC. 218-224.
    • (2009) Proceedings of GCC , pp. 218-224
    • Tian, C.1    Zhou, H.2    He, Y.3    Zha, L.4
  • 54
    • 84868221206 scopus 로고    scopus 로고
    • Two sides of a coin: Optimizing the schedule of MapReduce jobs to minimize their makespan and improve cluster performance
    • A. Verma, L. Cherkasova, and R. H. Campbell. 2012a. Two sides of a coin: Optimizing the schedule of MapReduce jobs to minimize their makespan and improve cluster performance. In Proceedings of MASCOTS. 11-18.
    • (2012) Proceedings of MASCOTS , pp. 11-18
    • Verma, A.1    Cherkasova, L.2    Campbell, R.H.3
  • 55
    • 84864188522 scopus 로고    scopus 로고
    • Deadline-based workload management for MapReduce environments: Pieces of the performance puzzle
    • A. Verma, L. Cherkasova, V. S. Kumar, and R. H. Campbell. 2012b. Deadline-based workload management for MapReduce environments: Pieces of the performance puzzle. In Proceedings of NOMS. 900-905.
    • (2012) Proceedings of NOMS , pp. 900-905
    • Verma, A.1    Cherkasova, L.2    Kumar, V.S.3    Campbell, R.H.4
  • 56
    • 84863054164 scopus 로고    scopus 로고
    • Energy-efficient multi-task scheduling based on MapReduce for cloud computing
    • X. Wang and Y.Wang. 2011. Energy-efficient multi-task scheduling based on MapReduce for cloud computing. In Proceedings of CIS. 57-62.
    • (2011) Proceedings of CIS , pp. 57-62
    • Wang, X.1    Wang, Y.2
  • 57
    • 84893081576 scopus 로고    scopus 로고
    • On scheduling algorithms for MapReduce jobs in heterogeneous clouds with budget constraints
    • Y. Wang and W. Shi. 2013. On scheduling algorithms for MapReduce jobs in heterogeneous clouds with budget constraints. In Proceedings of OPODIS. 251-265.
    • (2013) Proceedings of OPODIS , pp. 251-265
    • Wang, Y.1    Shi, W.2
  • 62
    • 84856610794 scopus 로고    scopus 로고
    • Energy efficient scheduling of MapReduce workloads on heterogeneous clusters
    • N. Yigitbasi, K. Datta, N. Jain, and T. Willke. 2011. Energy efficient scheduling of MapReduce workloads on heterogeneous clusters. In Proceedings of GCM. 1:1-1:6.
    • (2011) Proceedings of GCM. , pp. 11-16
    • Yigitbasi, N.1    Datta, K.2    Jain, N.3    Willke, T.4
  • 63
    • 80055116468 scopus 로고    scopus 로고
    • A comparative review of job scheduling for MapReduce
    • D. Yoo and K. M. Sim. 2011. A comparative review of job scheduling for MapReduce. In Proceedings of CCIS. 353-358.
    • (2011) Proceedings of CCIS , pp. 353-358
    • Yoo, D.1    Sim, K.M.2
  • 64
    • 84929467262 scopus 로고    scopus 로고
    • A locality enhanced scheduling method for multiple MapReduce jobs in a workflow application
    • Feb 2012
    • D. Yoo and K. M. Sim. 2012. A locality enhanced scheduling method for multiple MapReduce jobs in a workflow application. IPCSIT 24 (Feb 2012), 142-146.
    • (2012) IPCSIT , vol.24 , pp. 142-146
    • Yoo, D.1    Sim, K.M.2
  • 68
    • 80051609906 scopus 로고    scopus 로고
    • Improving data locality of MapReduce by scheduling in homogeneous computing environments
    • X. Zhang, Z. Zhong, S. Feng, B. Tu, and J. Fan. 2011. Improving data locality of MapReduce by scheduling in homogeneous computing environments. In Proceedings of ISPA. 120-126.
    • (2011) Proceedings of ISPA , pp. 120-126
    • Zhang, X.1    Zhong, Z.2    Feng, S.3    Tu, B.4    Fan, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.