메뉴 건너뛰기




Volumn , Issue , 2011, Pages 120-126

Improving Data Locality of MapReduce by scheduling in homogeneous computing environments

Author keywords

Cloud computing; Data locality; Distributed computing; MapReduce; Network load; Task scheduling

Indexed keywords

COMPUTING ENVIRONMENTS; CRITICAL FACTORS; DATA LOCALITY; LOW PROBABILITY; MAP TASK; MAP-REDUCE; NETWORK LOAD; NETWORK OVERLOADS; TASK-SCHEDULING;

EID: 80051609906     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISPA.2011.14     Document Type: Conference Paper
Times cited : (65)

References (16)
  • 3
  • 5
    • 49149107760 scopus 로고    scopus 로고
    • A taxonomy of data prefetching mechanisms
    • Los Alamitos, CA, USA
    • S. Byna, Y. Chen, and X.-H. Sun. A taxonomy of data prefetching mechanisms. In Proc. ISPAN'08, pages 19-24, Los Alamitos, CA, USA, 2008.
    • (2008) Proc. ISPAN'08 , pp. 19-24
    • Byna, S.1    Chen, Y.2    Sun, X.-H.3
  • 6
    • 78249263228 scopus 로고    scopus 로고
    • Samr: A self-adaptive mapreduce scheduling algorithm in heterogeneous environment
    • Los Alamitos, CA, USA
    • Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo. Samr: A self-adaptive mapreduce scheduling algorithm in heterogeneous environment. In Proc. CIT'10, pages 2736-2743, Los Alamitos, CA, USA, 2010.
    • (2010) Proc. CIT'10 , pp. 2736-2743
    • Chen, Q.1    Zhang, D.2    Guo, M.3    Deng, Q.4    Guo, S.5
  • 7
    • 85030321143 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. In OSDI'04, 2004.
    • (2004) OSDI'04
    • Dean, J.1    Ghemawat, S.2
  • 9
    • 77949535661 scopus 로고    scopus 로고
    • Biodoop: Bioinformatics on hadoop
    • Los Alamitos, CA, USA
    • S. Leo, F. Santoni, and G. Zanetti. Biodoop: Bioinformatics on hadoop. In Proc. ICPP Workshops, pages 415-422, Los Alamitos, CA, USA, 2009.
    • (2009) Proc. ICPP Workshops , pp. 415-422
    • Leo, S.1    Santoni, F.2    Zanetti, G.3
  • 12
    • 84856100806 scopus 로고    scopus 로고
    • Dynamic proportional share scheduling in hadoop
    • Atlanta, GA
    • T. Sandholm and K. Lai. Dynamic proportional share scheduling in hadoop. In Proc. IPDPS Workshops, Atlanta, GA, 2010.
    • (2010) Proc. IPDPS Workshops
    • Sandholm, T.1    Lai, K.2
  • 13
    • 72049096376 scopus 로고    scopus 로고
    • Hpmr: Prefetching and pre-shuffling in shared mapreduce computation environment
    • S. Seo, I. Jang, K. Woo, I. Kim, J.-S. Kim, and S. Maeng. Hpmr: Prefetching and pre-shuffling in shared mapreduce computation environment. In Proc. CLUSTER'10, pages 1- 8, 2009.
    • (2009) Proc. CLUSTER'10 , pp. 1-8
    • Seo, S.1    Jang, I.2    Woo, K.3    Kim, I.4    Kim, J.-S.5    Maeng, S.6
  • 14
    • 77951181190 scopus 로고    scopus 로고
    • Toolkitbased high-performance data mining of large data on mapreduce clusters
    • D.Wegener, M. Mock, D. Adranale, and S.Wrobel. Toolkitbased high-performance data mining of large data on mapreduce clusters. In Proc. ICDM Workshops, pages 296-301, 2009.
    • (2009) Proc. ICDM Workshops , pp. 296-301
    • Wegener, D.1    Mock, M.2    Adranale, D.3    Wrobel, S.4
  • 16
    • 72349098496 scopus 로고    scopus 로고
    • Spatial queries evaluation with mapreduce
    • Gansu, China
    • S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng. Spatial queries evaluation with mapreduce. In Proc. GCC'09, pages 287-292, Gansu, China, 2009.
    • (2009) Proc. GCC'09 , pp. 287-292
    • Zhang, S.1    Han, J.2    Liu, Z.3    Wang, K.4    Feng, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.