-
1
-
-
80054683038
-
Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals
-
Janecek, S., Svensson, B., and MacGregor, E. A. (2011) Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb. Technol. 49, 429-440
-
(2011)
Enzyme Microb. Technol.
, vol.49
, pp. 429-440
-
-
Janecek, S.1
Svensson, B.2
Macgregor, E.A.3
-
2
-
-
58149200943
-
The carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics
-
Cantarel, B. L., Coutinho, P. M., Rancurel, C, Bernard, T., Lombard, V., and Henrissat, B. (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233-D238
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. D233-D238
-
-
Cantarel, B.L.1
Coutinho, P.M.2
Rancurel, C.3
Bernard, T.4
Lombard, V.5
Henrissat, B.6
-
3
-
-
33745161547
-
Carbohydrate binding modules: Biochemical properties and novel applications
-
Shoseyov, O., Shani, Z., and Levy, I. (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol. Mol. Biol. Rev. 70, 283-295
-
(2006)
Microbiol. Mol. Biol. Rev.
, vol.70
, pp. 283-295
-
-
Shoseyov, O.1
Shani, Z.2
Levy, I.3
-
4
-
-
76649087970
-
Carbohydrate-binding domains: Multiplicity of biological roles
-
Guillen, D., Sanchez, S., and Rodŕiguez-Sanoja, R. (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl. Microbiol. Biotech-nol. 85, 1241-1249
-
(2010)
Appl. Microbiol. Biotech-nol.
, vol.85
, pp. 1241-1249
-
-
Guillen, D.1
Sanchez, S.2
Rodŕiguez-Sanoja, R.3
-
5
-
-
0037799908
-
AMPK β subunit targets metabolic stress sensing to glycogen
-
Polekhina, G., Gupta, A., Michell, B. J., van Denderen, B., Murthy, S., Feil, S. C, Jennings, I. G., Campbell, D. J., Witters, L. A., Parker, M. W., Kemp, B. E., and Stapleton, D. (2003) AMPK β subunit targets metabolic stress sensing to glycogen. Curr. Biol. 13, 867-871
-
(2003)
Curr. Biol.
, vol.13
, pp. 867-871
-
-
Polekhina, G.1
Gupta, A.2
Michell, B.J.3
Van Denderen, B.4
Murthy, S.5
Feil, S.C.6
Jennings, I.G.7
Campbell, D.J.8
Witters, L.A.9
Parker, M.W.10
Kemp, B.E.11
Stapleton, D.12
-
6
-
-
0038814313
-
A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias
-
Hudson, E. R., Pan, D. A., James, J., Lucocq, J. M., Hawley, S. A., Green, K.A., Baba, O., Terashima, T., andHardie, D.G. (2003) A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol. 13, 861-866
-
(2003)
Curr. Biol.
, vol.13
, pp. 861-866
-
-
Hudson, E.R.1
Pan, D.A.2
James, J.3
Lucocq, J.M.4
Hawley, S.A.5
Green, K.A.6
Baba, O.7
Terashima, T.8
Hardie, D.G.9
-
7
-
-
0345732634
-
Mutations in the gal83 glycogen-binding domain activate the snf1/gal83 kinase pathway by a glycogen-independent mechanism
-
Wiatrowski, H. A., Van Denderen, B. J., Berkey, C. D., Kemp, B. E., Staple-ton, D., and Carlson, M. (2004) Mutations in the gal83 glycogen-binding domain activate the snf1/gal83 kinase pathway by a glycogen-independent mechanism. Mol. Cell Biol. 24, 352-361
-
(2004)
Mol. Cell Biol.
, vol.24
, pp. 352-361
-
-
Wiatrowski, H.A.1
Van Denderen, B.J.2
Berkey, C.D.3
Kemp, B.E.4
Staple-Ton, D.5
Carlson, M.6
-
8
-
-
84901029449
-
Structural and functional basis for starch binding in the SnRK1 subunits AKINβ2 and AKINβ7
-
Avila-Castaneda, A., Gutierrez-Granados, N, Ruiz-Gayosso, A., Sosa-Pei-nado, A., Martínez-Barajas, E., and Coello, P. (2014) Structural and functional basis for starch binding in the SnRK1 subunits AKINβ2 and AKINβ7. Front. Plant Sci. 5, 199
-
(2014)
Front. Plant Sci.
, vol.5
, pp. 199
-
-
Avila-Castaneda, A.1
Gutierrez-Granados, N.2
Ruiz-Gayosso, A.3
Sosa-Pei-Nado, A.4
Martínez-Barajas, E.5
Coello, P.6
-
9
-
-
75349099919
-
Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer
-
Fogarty, S., and Hardie, D. G. (2010) Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta 1804, 581-591
-
(2010)
Biochim. Biophys. Acta
, vol.1804
, pp. 581-591
-
-
Fogarty, S.1
Hardie, D.G.2
-
10
-
-
84858782079
-
AMPK: A nutrient and energy sensor that maintains energy homeostasis
-
Hardie, D. G., Ross, F. A., and Hawley, S. A. (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251-262
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
11
-
-
33845949733
-
Dissecting the role of 5'-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase
-
Suter, M., Riek, U., Tuerk, R., Schlattner, U., Wallimann, T., and Neumann, D. (2006) Dissecting the role of 5'-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J. Biol. Chem. 281, 32207-32216
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 32207-32216
-
-
Suter, M.1
Riek, U.2
Tuerk, R.3
Schlattner, U.4
Wallimann, T.5
Neumann, D.6
-
12
-
-
63849125267
-
Insulin resistance and fuel homeostasis: The role of AMP-activated protein kinase
-
Hegarty, B.D., Turner, N, Cooney, G.J., andKraegen, E.W. (2009) Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase. Acta Physiol. 196, 129-145
-
(2009)
Acta Physiol.
, vol.196
, pp. 129-145
-
-
Hegarty, B.D.1
Turner, N.2
Cooney, G.J.3
Kraegen, E.W.4
-
13
-
-
80052511813
-
The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova, M. M., and Shaw, R. J. (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016-1023
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
14
-
-
34147152841
-
Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade
-
Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A., and Carling, D. (2007) Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J. 403, 139-148
-
(2007)
Biochem. J.
, vol.403
, pp. 139-148
-
-
Sanders, M.J.1
Grondin, P.O.2
Hegarty, B.D.3
Snowden, M.A.4
Carling, D.5
-
15
-
-
84862907765
-
AMP-activated protein kinase β-subunit requires internal motion for optimal carbohydrate binding
-
Bieri, M., Mobbs, J. I., Koay, A., Louey, G., Mok, Y. F., Hatters, D. M., Park, J. T., Park, K. H., Neumann, D., Stapleton, D., and Gooley, P. R. (2012) AMP-activated protein kinase β-subunit requires internal motion for optimal carbohydrate binding. Biophys. J. 102, 305-314
-
(2012)
Biophys. J.
, vol.102
, pp. 305-314
-
-
Bieri, M.1
Mobbs, J.I.2
Koay, A.3
Louey, G.4
Mok, Y.F.5
Hatters, D.M.6
Park, J.T.7
Park, K.H.8
Neumann, D.9
Stapleton, D.10
Gooley, P.R.11
-
16
-
-
77955274085
-
AMPK β subunits display iso-form specific affinities for carbohydrates
-
Koay, A., Woodcroft, B., Petrie, E. J., Yue, H., Emanuelle, S., Bieri, M., Bailey, M. F., Hargreaves, M., Park, J. T., Park, K. H., Ralph, S., Neumann, D., Stapleton, D., and Gooley, P. R. (2010) AMPK β subunits display iso-form specific affinities for carbohydrates. FEBS Lett. 584, 3499-3503
-
(2010)
FEBS Lett.
, vol.584
, pp. 3499-3503
-
-
Koay, A.1
Woodcroft, B.2
Petrie, E.J.3
Yue, H.4
Emanuelle, S.5
Bieri, M.6
Bailey, M.F.7
Hargreaves, M.8
Park, J.T.9
Park, K.H.10
Ralph, S.11
Neumann, D.12
Stapleton, D.13
Gooley, P.R.14
-
17
-
-
9444287616
-
The a2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading
-
Jørgensen, S. B., Nielsen, J. N, Birk, J. B., Olsen, G. S., Viollet, B., Andreelli, F., Schjerling, P., Vaulont, S., Hardie, D. G., Hansen, B. F., Richter, E. A., and Wojtaszewski, J. F. (2004) The a2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes 53, 3074-3081
-
(2004)
Diabetes
, vol.53
, pp. 3074-3081
-
-
Jørgensen, S.B.1
Nielsen, J.N.2
Birk, J.B.3
Olsen, G.S.4
Viollet, B.5
Andreelli, F.6
Schjerling, P.7
Vaulont, S.8
Hardie, D.G.9
Hansen, B.F.10
Richter, E.A.11
Wojtaszewski, J.F.12
-
18
-
-
79956305481
-
Processivity and subcellular localization of glycogen synthase depend on a non-catalytic high affinity glycogen-binding site
-
Díaz, A., Martínez-Pons, C., Fita, I., Ferrer, J. C., and Guinovart, J. J. (2011) Processivity and subcellular localization of glycogen synthase depend on a non-catalytic high affinity glycogen-binding site. J. Biol. Chem. 286, 18505-18514
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 18505-18514
-
-
Díaz, A.1
Martínez-Pons, C.2
Fita, I.3
Ferrer, J.C.4
Guinovart, J.J.5
-
19
-
-
0034652297
-
The subcellular localization of acetyl-CoA carboxylase 2
-
Abu-Elheiga, L., Brinkley, W. R., Zhong, L., Chirala, S. S., Woldegiorgis, G., and Wakil, S. J. (2000) The subcellular localization of acetyl-CoA carboxylase 2. Proc. Natl. Acad. Sci. U.S.A. 97, 1444-1449
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 1444-1449
-
-
Abu-Elheiga, L.1
Brinkley, W.R.2
Zhong, L.3
Chirala, S.S.4
Woldegiorgis, G.5
Wakil, S.J.6
-
20
-
-
0035282062
-
Post-translational modifications of the β-1 sub-unit of AMP-activated protein kinase affect enzyme activity and cellular localization
-
Warden, S. M., Richardson, C., O'Donnell, J., Jr., Stapleton, D., Kemp, B. E., and Witters, L. A. (2001) Post-translational modifications of the β-1 sub-unit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochem. J. 354, 275-283
-
(2001)
Biochem. J.
, vol.354
, pp. 275-283
-
-
Warden, S.M.1
Richardson, C.2
O'Donnell, J.3
Stapleton, D.4
Kemp, B.E.5
Witters, L.A.6
-
21
-
-
78650606464
-
β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK)
-
Oakhill, J. S., Chen, Z. P., Scott, J. W., Steel, R., Castelli, L. A., Ling, N, Macaulay, S. L., and Kemp, B. E. (2010) β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc. Natl. Acad. Sci. U.S.A. 107, 19237-19241
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 19237-19241
-
-
Oakhill, J.S.1
Chen, Z.P.2
Scott, J.W.3
Steel, R.4
Castelli, L.A.5
Ling, N.6
Macaulay, S.L.7
Kemp, B.E.8
-
22
-
-
77958066938
-
Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase
-
Kazgan, N, Williams, T., Forsberg, L. J., and Brenman, J. E. (2010) Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase. Mol. Biol. Cell 21, 3433-3442
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 3433-3442
-
-
Kazgan, N.1
Williams, T.2
Forsberg, L.J.3
Brenman, J.E.4
-
23
-
-
84901789448
-
AMPKa2 translocates into the nucleus and interacts with hnRNP H: Implications in metformin-mediated glucose uptake
-
Kim, N, Lee, J. O., Lee, H. J., Lee, S. K., Moon, J. W., Kim, S. J., Park, S. H, and Kim, H. S. (2014) AMPKa2 translocates into the nucleus and interacts with hnRNP H: implications in metformin-mediated glucose uptake. Cell. Signal. 26, 1800-1806
-
(2014)
Cell. Signal.
, vol.26
, pp. 1800-1806
-
-
Kim, N.1
Lee, J.O.2
Lee, H.J.3
Lee, S.K.4
Moon, J.W.5
Kim, S.J.6
Park, S.H.7
Kim, H.S.8
-
24
-
-
0043071497
-
Mammalian AMP-activated protein kinase: Functional, heterotri-meric complexes by co-expression of subunits in Escherichia coli
-
Neumann, D., Woods, A., Carling, D., Wallimann, T., and Schlattner, U. (2003) Mammalian AMP-activated protein kinase: functional, heterotri-meric complexes by co-expression of subunits in Escherichia coli. Protein Expr. Purif. 30, 230-237
-
(2003)
Protein Expr. Purif.
, vol.30
, pp. 230-237
-
-
Neumann, D.1
Woods, A.2
Carling, D.3
Wallimann, T.4
Schlattner, U.5
-
25
-
-
49649115970
-
Structural properties of AMP-activated protein kinase: Dimeriza-tion, molecular shape, and changes upon ligand binding
-
Riek, U., Scholz, R., Konarev, P., Rufer, A., Suter, M., Nazabal, A., Ringler, P., Chami, M., Müller, S. A., Neumann, D., Forstner, M., Hennig, M., Zenobi, R., Engel, A., Svergun, D., Schlattner, U., and Wallimann, T. (2008) Structural properties of AMP-activated protein kinase: dimeriza-tion, molecular shape, and changes upon ligand binding. J. Biol. Chem. 283, 18331-18343
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 18331-18343
-
-
Riek, U.1
Scholz, R.2
Konarev, P.3
Rufer, A.4
Suter, M.5
Nazabal, A.6
Ringler, P.7
Chami, M.8
Müller, S.A.9
Neumann, D.10
Forstner, M.11
Hennig, M.12
Zenobi, R.13
Engel, A.14
Svergun, D.15
Schlattner, U.16
Wallimann, T.17
-
26
-
-
36249027069
-
Co-expression of LKB1, MO25a and STRADa in bacteria yield the functional and active heterotrimeric complex
-
Neumann, D., Suter, M., Tuerk, R., Riek, U., and Wallimann, T. (2007) Co-expression of LKB1, MO25a and STRADa in bacteria yield the functional and active heterotrimeric complex. Mol. Biotechnol. 36, 220-231
-
(2007)
Mol. Biotechnol.
, vol.36
, pp. 220-231
-
-
Neumann, D.1
Suter, M.2
Tuerk, R.3
Riek, U.4
Wallimann, T.5
-
27
-
-
0043210478
-
Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis
-
Woods, A., Vertommen, D., Neumann, D., Turk, R., Bayliss, J., Schlattner, U., Wallimann, T., Carling, D., and Rider, M. H. (2003) Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J. Biol. Chem. 278, 28434-28442
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 28434-28442
-
-
Woods, A.1
Vertommen, D.2
Neumann, D.3
Turk, R.4
Bayliss, J.5
Schlattner, U.6
Wallimann, T.7
Carling, D.8
Rider, M.H.9
-
28
-
-
84898613353
-
Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK)
-
Bullen, J. W., Balsbaugh, J. L., Chanda, D., Shabanowitz, J., Hunt, D. F., Neumann, D., and Hart, G. W. (2014) Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J. Biol. Chem. 289, 10592-10606
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 10592-10606
-
-
Bullen, J.W.1
Balsbaugh, J.L.2
Chanda, D.3
Shabanowitz, J.4
Hunt, D.F.5
Neumann, D.6
Hart, G.W.7
-
29
-
-
77955497476
-
Autoactivation of transforming growth factor β-ac-tivated kinase 1 is a sequential bimolecular process
-
Scholz, R., Sidler, C. L., Thali, R. F., Winssinger, N., Cheung, P. C, and Neumann, D. (2010) Autoactivation of transforming growth factor β-ac-tivated kinase 1 is a sequential bimolecular process. J. Biol. Chem. 285, 25753-25766
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 25753-25766
-
-
Scholz, R.1
Sidler, C.L.2
Thali, R.F.3
Winssinger, N.4
Cheung, P.C.5
Neumann, D.6
-
30
-
-
70350437313
-
Homo-oligomerization and activation of AMP-activated protein kinase are mediated by the kinase domain aG-helix
-
Scholz, R., Suter, M., Weimann, T., Polge, C, Konarev, P. V., Thali, R. F., Tuerk, R. D., Viollet, B., Wallimann, T., Schlattner, U., and Neumann, D. (2009) Homo-oligomerization and activation of AMP-activated protein kinase are mediated by the kinase domain aG-helix. J. Biol. Chem. 284, 27425-27437
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 27425-27437
-
-
Scholz, R.1
Suter, M.2
Weimann, T.3
Polge, C.4
Konarev, P.V.5
Thali, R.F.6
Tuerk, R.D.7
Viollet, B.8
Wallimann, T.9
Schlattner, U.10
Neumann, D.11
-
31
-
-
0030007469
-
Glycogen: A carbohydrate source for GLUT-1 glycosylation during glucose deprivation of 3T3-L1 adipocytes
-
McMahon, R. J., and Frost, S. C. (1996) Glycogen: a carbohydrate source for GLUT-1 glycosylation during glucose deprivation of 3T3-L1 adipocytes. Am. J. Physiol. 270, E640-E645
-
(1996)
Am. J. Physiol.
, vol.270
, pp. E640-E645
-
-
McMahon, R.J.1
Frost, S.C.2
-
32
-
-
0029833422
-
Episomal vectors rapidly and stably produce high-titer recombinant retrovirus
-
Kinsella, T. M., and Nolan, G. P. (1996) Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405-1413
-
(1996)
Hum. Gene Ther.
, vol.7
, pp. 1405-1413
-
-
Kinsella, T.M.1
Nolan, G.P.2
-
33
-
-
0025352187
-
Advanced mammalian gene transfer: High titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line
-
Morgenstern, J. P., and Land, H. (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587-3596
-
(1990)
Nucleic Acids Res.
, vol.18
, pp. 3587-3596
-
-
Morgenstern, J.P.1
Land, H.2
-
34
-
-
14044263532
-
MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1.J
-
Voncken, J. W., Niessen, H, Neufeld, B., Rennefahrt, U., Dahlmans, V., Kubben, N., Holzer, B., Ludwig, S., and Rapp, U. R. (2005) MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1.J. Biol. Chem. 280, 5178-5187
-
(2005)
Biol. Chem.
, vol.280
, pp. 5178-5187
-
-
Voncken, J.W.1
Niessen, H.2
Neufeld, B.3
Rennefahrt, U.4
Dahlmans, V.5
Kubben, N.6
Holzer, B.7
Ludwig, S.8
Rapp, U.R.9
-
35
-
-
0030870168
-
Posttranslational modifications of the 5'-AMP-activated protein kinase β1 subunit
-
Mitchelhill, K. I., Michell, B. J., House, C. M., Stapleton, D., Dyck, J., Gamble, J., Ullrich, C, Witters, L. A., and Kemp, B. E. (1997) Posttranslational modifications of the 5'-AMP-activated protein kinase β1 subunit. J. Biol. Chem. 272, 24475-24479
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 24475-24479
-
-
Mitchelhill, K.I.1
Michell, B.J.2
House, C.M.3
Stapleton, D.4
Dyck, J.5
Gamble, J.6
Ullrich, C.7
Witters, L.A.8
Kemp, B.E.9
-
36
-
-
65849084678
-
Tracking and quantification of 32P-labeled phosphopeptides in liquid chromatography matrix-assisted laser desorp-tion/ionization mass spectrometry
-
Tuerk, R. D., Auchli, Y., Thali, R. F., Scholz, R., Wallimann, T., Brunisholz, R. A., and Neumann, D. (2009) Tracking and quantification of 32P-labeled phosphopeptides in liquid chromatography matrix-assisted laser desorp-tion/ionization mass spectrometry. Anal. Biochem. 390, 141-148
-
(2009)
Anal. Biochem.
, vol.390
, pp. 141-148
-
-
Tuerk, R.D.1
Auchli, Y.2
Thali, R.F.3
Scholz, R.4
Wallimann, T.5
Brunisholz, R.A.6
Neumann, D.7
-
37
-
-
84863011221
-
The laforin-malin complex negatively regulates glycogen synthesis by modulating cellular glucose uptake via glucose transporters
-
Singh, P. K., Singh, S., and Ganesh, S. (2012) The laforin-malin complex negatively regulates glycogen synthesis by modulating cellular glucose uptake via glucose transporters. Mol. Cell Biol. 32, 652-663
-
(2012)
Mol. Cell Biol.
, vol.32
, pp. 652-663
-
-
Singh, P.K.1
Singh, S.2
Ganesh, S.3
-
38
-
-
50249148288
-
Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity
-
Hashimoto, Y. K., Satoh, T., Okamoto, M., and Takemori, H. (2008) Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity. J. Cell Biochem. 104, 1724-1739
-
(2008)
J. Cell Biochem.
, vol.104
, pp. 1724-1739
-
-
Hashimoto, Y.K.1
Satoh, T.2
Okamoto, M.3
Takemori, H.4
-
39
-
-
84901329684
-
Small molecule drug A-769662 and AMP synergistically activate naive AMPK independent of upstream kinase signaling
-
Scott, J. W., Ling, N., Issa, S. M., Dite, T. A., O'Brien, M. T., Chen, Z. P., Galic, S., Langendorf, C. G., Steinberg, G. R., Kemp, B. E., and Oakhill, J. S. (2014) Small molecule drug A-769662 and AMP synergistically activate naive AMPK independent of upstream kinase signaling. Chem. Biol. 21, 619-627
-
(2014)
Chem. Biol.
, vol.21
, pp. 619-627
-
-
Scott, J.W.1
Ling, N.2
Issa, S.M.3
Dite, T.A.4
O'Brien, M.T.5
Chen, Z.P.6
Galic, S.7
Langendorf, C.G.8
Steinberg, G.R.9
Kemp, B.E.10
Oakhill, J.S.11
-
40
-
-
0032500506
-
An essential role for autophosphorylation in the dissociation of activated protein kinase C from the plasma membrane
-
Feng, X., and Hannun, Y. A. (1998) An essential role for autophosphorylation in the dissociation of activated protein kinase C from the plasma membrane. J. Biol. Chem. 273, 26870-26874
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 26870-26874
-
-
Feng, X.1
Hannun, Y.A.2
-
41
-
-
58149351369
-
A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy
-
Lorenz, K., Schmitt, J. P., Schmitteckert, E. M., and Lohse, M. J. (2009) A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat. Med. 15, 75-83
-
(2009)
Nat. Med.
, vol.15
, pp. 75-83
-
-
Lorenz, K.1
Schmitt, J.P.2
Schmitteckert, E.M.3
Lohse, M.J.4
-
42
-
-
67649760225
-
AMP-activated protein kinase phosphorylates R5/PTG, the glycogen targeting subunit of the R5/PTG-protein phosphatase 1 holoenzyme, and accelerates its down-regulation by the laforin-malin complex
-
Vernia, S., Solaz-Fuster, M. C, Gimeno-Alcaniz, J. V., Rubio, T., Garćia-Haro, L., Foretz, M., de Cordoba, S. R., and Sanz, P. (2009) AMP-activated protein kinase phosphorylates R5/PTG, the glycogen targeting subunit of the R5/PTG-protein phosphatase 1 holoenzyme, and accelerates its down-regulation by the laforin-malin complex. J. Biol. Chem. 284, 8247-8255
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 8247-8255
-
-
Vernia, S.1
Solaz-Fuster, M.C.2
Gimeno-Alcaniz, J.V.3
Rubio, T.4
Garćia-Haro, L.5
Foretz, M.6
De Cordoba, S.R.7
Sanz, P.8
-
43
-
-
0022883824
-
Phosphorylation of the glycogen-binding subunit of protein phosphatase-1G by cyclic-AMP-dependent protein kinase promotes translocation of the phosphatase from glycogen to cytosol in rabbit skeletal muscle
-
Hiraga, A., and Cohen, P. (1986) Phosphorylation of the glycogen-binding subunit of protein phosphatase-1G by cyclic-AMP-dependent protein kinase promotes translocation of the phosphatase from glycogen to cytosol in rabbit skeletal muscle. Eur. J. Biochem. 161, 763-769
-
(1986)
Eur. J. Biochem.
, vol.161
, pp. 763-769
-
-
Hiraga, A.1
Cohen, P.2
-
44
-
-
0023928214
-
Phosphorylation of the glycogen-binding subunit of protein phosphatase-1G in response to adrenalin
-
MacKintosh, C, Campbell, D. G., Hiraga, A., and Cohen, P. (1988) Phosphorylation of the glycogen-binding subunit of protein phosphatase-1G in response to adrenalin. FEBS Lett. 234, 189-194
-
(1988)
FEBS Lett.
, vol.234
, pp. 189-194
-
-
Mackintosh, C.1
Campbell, D.G.2
Hiraga, A.3
Cohen, P.4
-
45
-
-
79952585386
-
Intracellular com-partmentalization of skeletal muscle glycogen metabolism and insulin signalling
-
Prats, C, Gomez-Cabello, A., and Hansen, A. V. (2011) Intracellular com-partmentalization of skeletal muscle glycogen metabolism and insulin signalling. Exp. Physiol. 96, 385-390
-
(2011)
Exp. Physiol.
, vol.96
, pp. 385-390
-
-
Prats, C.1
Gomez-Cabello, A.2
Hansen, A.V.3
-
46
-
-
77949686964
-
Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis
-
Han, G., Ye, M., Liu, H., Song, C, Sun, D., Wu, Y., Jiang, X., Chen, R., Wang, C, Wang, L., and Zou, H. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-1089
-
(2010)
Electrophoresis
, vol.31
, pp. 1080-1089
-
-
Han, G.1
Ye, M.2
Liu, H.3
Song, C.4
Sun, D.5
Wu, Y.6
Jiang, X.7
Chen, R.8
Wang, C.9
Wang, L.10
Zou, H.11
-
47
-
-
84890300195
-
An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome
-
Bian, Y., Song, C, Cheng, K., Dong, M., Wang, F., Huang, J., Sun, D., Wang, L., Ye, M., and Zou, H. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J. Proteomics 96, 253-262
-
(2014)
J. Proteomics
, vol.96
, pp. 253-262
-
-
Bian, Y.1
Song, C.2
Cheng, K.3
Dong, M.4
Wang, F.5
Huang, J.6
Sun, D.7
Wang, L.8
Ye, M.9
Zou, H.10
-
48
-
-
38349032866
-
Insulin promotes glycogen synthesis in the absence of GSK3 phosphorylation in skeletal muscle
-
Bouskila, M., Hirshman, M. F., Jensen, J., Goodyear, L. J., and Sakamoto, K. (2008) Insulin promotes glycogen synthesis in the absence of GSK3 phosphorylation in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 294, E28-E35
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.294
, pp. E28-E35
-
-
Bouskila, M.1
Hirshman, M.F.2
Jensen, J.3
Goodyear, L.J.4
Sakamoto, K.5
-
49
-
-
0031849916
-
Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport
-
Hayashi, T., Hirshman, M. F., Kurth, E. J., Winder, W. W., and Goodyear, L. J. (1998) Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47, 1369-1373
-
(1998)
Diabetes
, vol.47
, pp. 1369-1373
-
-
Hayashi, T.1
Hirshman, M.F.2
Kurth, E.J.3
Winder, W.W.4
Goodyear, L.J.5
-
50
-
-
0032765396
-
5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle
-
Kurth-Kraczek, E. J., Hirshman, M. F., Goodyear, L.J., and Winder, W. W. (1999) 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48, 1667-1671
-
(1999)
Diabetes
, vol.48
, pp. 1667-1671
-
-
Kurth-Kraczek, E.J.1
Hirshman, M.F.2
Goodyear, L.J.3
Winder, W.W.4
-
51
-
-
0032728266
-
Expression of the AMP-activated protein kinase β1 and β2 subunits in skeletal muscle
-
Chen, Z., Heierhorst, J., Mann, R. J., Mitchelhill, K. I., Michell, B. J., Witters, L. A., Lynch, G.S., Kemp, B.E., andStapleton, D. (1999) Expression of the AMP-activated protein kinase β1 and β2 subunits in skeletal muscle. FEBS Lett. 460, 343-348
-
(1999)
FEBS Lett.
, vol.460
, pp. 343-348
-
-
Chen, Z.1
Heierhorst, J.2
Mann, R.J.3
Mitchelhill, K.I.4
Michell, B.J.5
Witters, L.A.6
Lynch, G.S.7
Kemp, B.E.8
Stapleton, D.9
-
52
-
-
23944489287
-
Glycogen debranching enzyme association with β-subunit regulates AMP-activated protein kinase activity
-
Sakoda, H., Fujishiro, M., Fujio, J., Shojima, N., Ogihara, T., Kushiyama, A., Fukushima, Y., Anai, M., Ono, H., Kikuchi, M., Horike, N., Viana, A. Y., Uchijima, Y., Kurihara, H., and Asano, T. (2005) Glycogen debranching enzyme association with β-subunit regulates AMP-activated protein kinase activity. Am. J. Physiol. Endocrinol. Metab. 289, E474-E481
-
(2005)
Am. J. Physiol. Endocrinol. Metab.
, vol.289
, pp. E474-E481
-
-
Sakoda, H.1
Fujishiro, M.2
Fujio, J.3
Shojima, N.4
Ogihara, T.5
Kushiyama, A.6
Fukushima, Y.7
Anai, M.8
Ono, H.9
Kikuchi, M.10
Horike, N.11
Viana, A.Y.12
Uchijima, Y.13
Kurihara, H.14
Asano, T.15
-
53
-
-
79952395789
-
Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle
-
Hunter, R. W., Treebak, J. T., Wojtaszewski, J. F., and Sakamoto, K. (2011) Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle. Diabetes 60, 766-774
-
(2011)
Diabetes
, vol.60
, pp. 766-774
-
-
Hunter, R.W.1
Treebak, J.T.2
Wojtaszewski, J.F.3
Sakamoto, K.4
-
54
-
-
0024335432
-
The substrate and sequence specificity of the AMP-activated protein kinase: Phosphorylation of glycogen synthase and phosphorylase kinase
-
Carling, D., and Hardie, D. G. (1989) The substrate and sequence specificity of the AMP-activated protein kinase: phosphorylation of glycogen synthase and phosphorylase kinase. Biochim. Biophys. Acta 1012, 81-86
-
(1989)
Biochim. Biophys. Acta
, vol.1012
, pp. 81-86
-
-
Carling, D.1
Hardie, D.G.2
-
55
-
-
80052065377
-
Laforin, a dual-specificity phosphatase involved in Lafora disease, is phosphorylated at Ser25 by AMP-activated protein kinase
-
Roma-Mateo, C., Solaz-Fuster Mdel, C., Gimeno-Alcaniz, J. V., Dukhande, V. V., Donderis, J., Worby, C. A., Marina, A., Criado, O., Koller, A., Rodriguez De Cordoba, S., Gentry, M.S., andSanz, P. (2011) Laforin, a dual-specificity phosphatase involved in Lafora disease, is phosphorylated at Ser25 by AMP-activated protein kinase. Biochem. J. 439, 265-275
-
(2011)
Biochem. J.
, vol.439
, pp. 265-275
-
-
Roma-Mateo, C.1
Solaz-Fuster Mdel, C.2
Gimeno-Alcaniz, J.V.3
Dukhande, V.V.4
Donderis, J.5
Worby, C.A.6
Marina, A.7
Criado, O.8
Koller, A.9
Rodriguez De Cordoba, S.10
Gentry, M.S.11
Sanz, P.12
-
56
-
-
57849090443
-
The glycogen-binding domain on the AMPK β subunit allows the kinase to act as a glycogen sensor
-
McBride, A., Ghilagaber, S., Nikolaev, A., and Hardie, D. G. (2009) The glycogen-binding domain on the AMPK β subunit allows the kinase to act as a glycogen sensor. Cell Metab. 9, 23-34
-
(2009)
Cell Metab.
, vol.9
, pp. 23-34
-
-
McBride, A.1
Ghilagaber, S.2
Nikolaev, A.3
Hardie, D.G.4
-
57
-
-
84924341261
-
Structural basis of AMPK regulation by adenine nucleotides and glycogen
-
Li, X., Wang, L., Zhou, X. E., Ke, J., de Waal, P. W., Gu, X., Tan, M. H, Wang, D., Wu, D., Xu, H. E., and Melcher, K. (2015) Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res. 25, 50-66
-
(2015)
Cell Res.
, vol.25
, pp. 50-66
-
-
Li, X.1
Wang, L.2
Zhou, X.E.3
Ke, J.4
De Waal, P.W.5
Gu, X.6
Tan, M.H.7
Wang, D.8
Wu, D.9
Xu, H.E.10
Melcher, K.11
-
58
-
-
84861857806
-
The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise
-
Jensen, J., Rustad, P. I., Kolnes, A. J., and Lai, Y. C. (2011) The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front. Physiol. 2, 112
-
(2011)
Front. Physiol.
, vol.2
, pp. 112
-
-
Jensen, J.1
Rustad, P.I.2
Kolnes, A.J.3
Lai, Y.C.4
-
59
-
-
0037093644
-
Increasing the precision of comparative models with YASARA NOVA: A self-parameterizing force field
-
Krieger, E., Koraimann, G., andVriend, G. (2002) Increasing the precision of comparative models with YASARA NOVA: a self-parameterizing force field. Proteins 47, 393-402
-
(2002)
Proteins
, vol.47
, pp. 393-402
-
-
Krieger, E.1
Koraimann Andvriend G, G.2
|