메뉴 건너뛰기




Volumn 26, Issue , 2015, Pages 1-35

Ocular biometrics: A survey of modalities and fusion approaches

Author keywords

Information fusion; Iris; Ocular biometrics; Periocular; Retina

Indexed keywords

EYE MOVEMENTS; INFORMATION FUSION; LEARNING ALGORITHMS; LEARNING SYSTEMS; OPEN SOURCE SOFTWARE; OPEN SYSTEMS; SOFTWARE DESIGN;

EID: 84929472818     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2015.03.005     Document Type: Article
Times cited : (159)

References (245)
  • 2
    • 0004168224 scopus 로고
    • Iris Recognition System
    • US Patent
    • L. Flom, A. Safir, Iris Recognition System, US Patent 4,641,349, 1987.
    • (1987)
    • Flom, L.1    Safir, A.2
  • 4
    • 0042417422 scopus 로고
    • Apparatus and Method for Identifying Individuals through their Retinal Vasculature Patterns
    • US Patent
    • R.B. Hill, Apparatus and Method for Identifying Individuals through their Retinal Vasculature Patterns, US Patent 4,109,237, 1978.
    • (1978)
    • Hill, R.B.1
  • 10
    • 84973246824 scopus 로고    scopus 로고
    • Unique Identification Authority of India. 〈http://uidai.gov.in/〉.
  • 11
    • 84929478952 scopus 로고    scopus 로고
    • Office of Biometric Identity Management, National Protection and Programs Directorate.
    • Office of Biometric Identity Management, National Protection and Programs Directorate. 〈http://www.dhs.gov/obim〉.
  • 14
    • 0027700869 scopus 로고
    • High confidence visual recognition of persons by a test of statistical independence
    • J. Daugman High confidence visual recognition of persons by a test of statistical independence IEEE Trans. Pattern Anal. Mach. Intell. 15 11 1993 1148 1161
    • (1993) IEEE Trans. Pattern Anal. Mach. Intell. , vol.15 , Issue.11 , pp. 1148-1161
    • Daugman, J.1
  • 15
    • 0036487317 scopus 로고    scopus 로고
    • The importance of being random: Statistical principles of iris recognition
    • J. Daugman The importance of being random: statistical principles of iris recognition Pattern Recogn. 36 2 2003 279 291
    • (2003) Pattern Recogn. , vol.36 , Issue.2 , pp. 279-291
    • Daugman, J.1
  • 20
    • 78249237885 scopus 로고    scopus 로고
    • Unconstrained iris acquisition and recognition using COTS PTZ camera
    • S. Venugopalan, and M. Savvides Unconstrained iris acquisition and recognition using COTS PTZ camera EURASIP J. Adv. Signal Process 2010 2010 381 3820
    • (2010) EURASIP J. Adv. Signal Process , vol.2010 , pp. 381-3820
    • Venugopalan, S.1    Savvides, M.2
  • 31
    • 84874538360 scopus 로고    scopus 로고
    • An automatic iris occlusion estimation method based on high-dimensional density estimation
    • Y.-H. Li, and M. Savvides An automatic iris occlusion estimation method based on high-dimensional density estimation IEEE Trans. Pattern Anal. Mach. Intell. 35 4 2013 784 796
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.4 , pp. 784-796
    • Li, Y.-H.1    Savvides, M.2
  • 34
    • 84929478954 scopus 로고    scopus 로고
    • accessed 15.03.15
    • CASIA Version 4 Database. 〈http://biometrics.idealtest.org/dbDetailForUser.do?id=4〉 (accessed 15.03.15).
    • CASIA Version 4 Database
  • 35
    • 70449635329 scopus 로고    scopus 로고
    • Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition
    • T. Tan, Z. He, and Z. Sun Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition Image Vis. Comput. 28 2 2010 223 230
    • (2010) Image Vis. Comput. , vol.28 , Issue.2 , pp. 223-230
    • Tan, T.1    He, Z.2    Sun, Z.3
  • 40
    • 77956340247 scopus 로고    scopus 로고
    • Iris segmentation in non-ideal images using graph cuts
    • S. Pundlik, D. Woodard, and S. Birchfield Iris segmentation in non-ideal images using graph cuts Image Vis. Comput. 28 12 2010 1671 1681
    • (2010) Image Vis. Comput. , vol.28 , Issue.12 , pp. 1671-1681
    • Pundlik, S.1    Woodard, D.2    Birchfield, S.3
  • 41
    • 77952584252 scopus 로고    scopus 로고
    • On a methodology for robust segmentation of nonideal iris images
    • J. Zuo, and N. Schmid On a methodology for robust segmentation of nonideal iris images IEEE Trans. Syst. Man Cybern. Part B: Cybern. 40 3 2010 703 718
    • (2010) IEEE Trans. Syst. Man Cybern. Part B: Cybern. , vol.40 , Issue.3 , pp. 703-718
    • Zuo, J.1    Schmid, N.2
  • 43
    • 77953810940 scopus 로고    scopus 로고
    • Iris recognition: On the segmentation of degraded images acquired in the visible wavelength
    • H. Proença Iris recognition: on the segmentation of degraded images acquired in the visible wavelength IEEE Trans. Pattern Anal. Mach. Intell. 32 8 2010 1502 1516
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.8 , pp. 1502-1516
    • Proença, H.1
  • 47
    • 84865403337 scopus 로고    scopus 로고
    • Unified framework for automated iris segmentation using distantly acquired face images
    • C.-W. Tan, and A. Kumar Unified framework for automated iris segmentation using distantly acquired face images IEEE Trans. Image Process. 21 9 2012 4068 4079
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.9 , pp. 4068-4079
    • Tan, C.-W.1    Kumar, A.2
  • 51
    • 84929478961 scopus 로고    scopus 로고
    • accessed 15.03.15
    • Herta Iris Database. 〈http://research.hertasecurity.com/datasets/HID〉 (accessed 15.03.15).
    • Herta Iris Database
  • 53
    • 84866793528 scopus 로고    scopus 로고
    • Weighted adaptive Hough and ellipsopolar transforms for real-time iris segmentation
    • A. Uhl, P. Wild, Weighted adaptive Hough and ellipsopolar transforms for real-time iris segmentation, in: 5th IAPR International Conference on Biometrics, 2012, pp. 283-290.
    • 5th IAPR International Conference on Biometrics, 2012 , pp. 283-290
    • Uhl, A.1    Wild, P.2
  • 58
    • 84883424824 scopus 로고    scopus 로고
    • Towards online iris and periocular recognition under relaxed imaging constraints
    • C.-W. Tan, and A. Kumar Towards online iris and periocular recognition under relaxed imaging constraints IEEE Trans. Image Process. 22 10 2013 3751 3765
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.10 , pp. 3751-3765
    • Tan, C.-W.1    Kumar, A.2
  • 59
    • 84939997578 scopus 로고    scopus 로고
    • Segmenting iris images in the visible spectrum with applications in mobile biometrics
    • R.R. Jillela, and A. Ross Segmenting iris images in the visible spectrum with applications in mobile biometrics Pattern Recognit. Lett. 2014 10.1016/j.patrec.2014.09.014
    • (2014) Pattern Recognit. Lett.
    • Jillela, R.R.1    Ross, A.2
  • 61
    • 84929478966 scopus 로고    scopus 로고
    • accessed 15.03.15
    • CASIA Version 3 Database. 〈http://biometrics.idealtest.org/dbDetailForUser.do?id=3〉 (accessed 15.03.15).
    • CASIA Version 3 Database
  • 66
    • 84929478968 scopus 로고    scopus 로고
    • accessed 15.03.15
    • Miles Research Database. 〈http://www.milesresearch.com/〉 (accessed 15.03.15).
    • Miles Research Database
  • 68
    • 77953284769 scopus 로고    scopus 로고
    • Adaptive reflection detection and location in iris biometric images by using computational intelligence techniques
    • F. Scotti, and V. Piuri Adaptive reflection detection and location in iris biometric images by using computational intelligence techniques IEEE Trans. Instrum. Meas. 59 7 2010 1825 1833
    • (2010) IEEE Trans. Instrum. Meas. , vol.59 , Issue.7 , pp. 1825-1833
    • Scotti, F.1    Piuri, V.2
  • 71
    • 80054958857 scopus 로고    scopus 로고
    • Improved Iris recognition through fusion of hamming distance and fragile bit distance
    • K. Hollingsworth, K. Bowyer, and P. Flynn Improved Iris recognition through fusion of hamming distance and fragile bit distance IEEE Trans. Pattern Anal. Mach. Intell. 33 12 2011 2465 2476
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.12 , pp. 2465-2476
    • Hollingsworth, K.1    Bowyer, K.2    Flynn, P.3
  • 72
    • 84888369209 scopus 로고    scopus 로고
    • Iris biometrics: Indexing and retrieving heavily degraded data
    • H. Proença Iris biometrics: indexing and retrieving heavily degraded data IEEE Trans. Inf. Forensics Secur. 8 12 2013 1975 1985
    • (2013) IEEE Trans. Inf. Forensics Secur. , vol.8 , Issue.12 , pp. 1975-1985
    • Proença, H.1
  • 74
    • 79952846401 scopus 로고    scopus 로고
    • Iris recognition by fusing different representations of multi-scale Taylor expansion
    • A. Bastys, J. Kranauskas, and V. Krger Iris recognition by fusing different representations of multi-scale Taylor expansion Comput. Vis. Image Underst. 115 6 2011 804 816
    • (2011) Comput. Vis. Image Underst. , vol.115 , Issue.6 , pp. 804-816
    • Bastys, A.1    Kranauskas, J.2    Krger, V.3
  • 75
    • 81355138353 scopus 로고    scopus 로고
    • Fusing color and shape descriptors in the recognition of degraded iris images acquired at visible wavelengths
    • H. Proença, and G. Santos Fusing color and shape descriptors in the recognition of degraded iris images acquired at visible wavelengths Comput. Vis. Image Underst. 116 2 2012 167 178
    • (2012) Comput. Vis. Image Underst. , vol.116 , Issue.2 , pp. 167-178
    • Proença, H.1    Santos, G.2
  • 76
    • 84866775856 scopus 로고    scopus 로고
    • Human identification from at-a-distance face images using sparse representation of local iris features
    • A. Kumar, T.-S. Chan, C.-W. Tan, Human identification from at-a-distance face images using sparse representation of local iris features, in: 5th IAPR International Conference on Biometrics, 2012, pp. 303-309.
    • 5th IAPR International Conference on Biometrics, 2012 , pp. 303-309
    • Kumar, A.1    Chan, T.-S.2    Tan, C.-W.3
  • 78
    • 84855968315 scopus 로고    scopus 로고
    • Half-iris feature extraction and recognition using a new class of biorthogonal triplet half-band filter bank and flexible k-out-of-n: A postclassifier
    • A. Rahulkar, and R. Holambe Half-iris feature extraction and recognition using a new class of biorthogonal triplet half-band filter bank and flexible k-out-of-n: a postclassifier IEEE Trans. Inf. Forensics Secur. 7 1 2012 230 240
    • (2012) IEEE Trans. Inf. Forensics Secur. , vol.7 , Issue.1 , pp. 230-240
    • Rahulkar, A.1    Holambe, R.2
  • 79
    • 84866669357 scopus 로고    scopus 로고
    • Perturbation-enhanced feature correlation filter for robust iris recognition
    • M. Zhang, Z. Sun, and T. Tan Perturbation-enhanced feature correlation filter for robust iris recognition IET Biometrics 1 1 2012 37 45
    • (2012) IET Biometrics , vol.1 , Issue.1 , pp. 37-45
    • Zhang, M.1    Sun, Z.2    Tan, T.3
  • 87
    • 84901821810 scopus 로고    scopus 로고
    • Iris image classification based on hierarchical visual codebook
    • Z. Sun, H. Zhang, T. Tan, and J. Wang Iris image classification based on hierarchical visual codebook IEEE Trans. Pattern Anal. Mach. Intell. 36 6 2014 1120 1133
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.36 , Issue.6 , pp. 1120-1133
    • Sun, Z.1    Zhang, H.2    Tan, T.3    Wang, J.4
  • 89
    • 84905259141 scopus 로고    scopus 로고
    • Ordinal feature selection for iris and palmprint recognition
    • Z. Sun, L. Wang, and T. Tan Ordinal feature selection for iris and palmprint recognition IEEE Trans. Image Process. 23 9 2014 3922 3934
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.9 , pp. 3922-3934
    • Sun, Z.1    Wang, L.2    Tan, T.3
  • 90
    • 84923065863 scopus 로고    scopus 로고
    • Accurate Iris Recognition at a Distance Using Stabilized Iris Encoding and Zernike Moments Phase Features
    • C.W. Tan, and A. Kumar Accurate Iris Recognition at a Distance Using Stabilized Iris Encoding and Zernike Moments Phase Features IEEE Transactions on Image Processing 23 9 2014 3962 3974
    • (2014) IEEE Transactions on Image Processing , vol.23 , Issue.9 , pp. 3962-3974
    • Tan, C.W.1    Kumar, A.2
  • 91
    • 84929456228 scopus 로고    scopus 로고
    • Efficient and Accurate At-a-Distance Iris Recognition Using Geometric Key-Based Iris Encoding
    • C.-W. Tan, and A. Kumar Efficient and Accurate At-a-Distance Iris Recognition Using Geometric Key-Based Iris Encoding IEEE Transactions on Information Forensics and Security 9 9 2014 1518 1526
    • (2014) IEEE Transactions on Information Forensics and Security , vol.9 , Issue.9 , pp. 1518-1526
    • Tan, C.-W.1    Kumar, A.2
  • 93
    • 84959538473 scopus 로고    scopus 로고
    • accessed 15.03.15
    • IIT Delhi Iris Database (Version 1.0). 〈http://www4.comp.polyu.edu.hk/csajaykr/IITD/DatabaseIris.htm〉 (accessed 15.03.15).
    • IIT Delhi Iris Database (Version 1.0)
  • 94
    • 84929478974 scopus 로고    scopus 로고
    • accessed 15.03.15
    • CASIA Version 1 Database. 〈http://biometrics.idealtest.org/dbDetailForUser.do?id=1〉 (accessed 15.03.15).
    • CASIA Version 1 Database
  • 95
    • 84929478975 scopus 로고    scopus 로고
    • accessed 15.03.15
    • CASIA Version 2 Database. 〈http://biometrics.idealtest.org/dbDetailForUser.do?id=2〉 (accessed 15.03.15).
    • CASIA Version 2 Database
  • 100
    • 76649132309 scopus 로고    scopus 로고
    • An iris recognition approach through structural pattern analysis methods
    • H. Proença An iris recognition approach through structural pattern analysis methods Expert Syst. 27 1 2010 6 16
    • (2010) Expert Syst. , vol.27 , Issue.1 , pp. 6-16
    • Proença, H.1
  • 102
    • 79955872942 scopus 로고    scopus 로고
    • Iris recognition based on elastic graph matching and Gabor wavelets
    • R. Farouk Iris recognition based on elastic graph matching and Gabor wavelets Comput. Vis. Image Underst. 115 8 2011 1239 1244
    • (2011) Comput. Vis. Image Underst. , vol.115 , Issue.8 , pp. 1239-1244
    • Farouk, R.1
  • 103
    • 84858599923 scopus 로고    scopus 로고
    • Index codes for multibiometric pattern retrieval
    • A. Gyaourova, and A. Ross Index codes for multibiometric pattern retrieval IEEE Trans. Inf. Forensics Secur. 7 2 2012 518 529
    • (2012) IEEE Trans. Inf. Forensics Secur. , vol.7 , Issue.2 , pp. 518-529
    • Gyaourova, A.1    Ross, A.2
  • 104
    • 84863915235 scopus 로고    scopus 로고
    • Iris data indexing method using Gabor energy features
    • S. Dey, and D. Samanta Iris data indexing method using Gabor energy features IEEE Trans. Inf. Forensics Secur. 7 4 2012 1192 1203
    • (2012) IEEE Trans. Inf. Forensics Secur. , vol.7 , Issue.4 , pp. 1192-1203
    • Dey, S.1    Samanta, D.2
  • 106
    • 84859158860 scopus 로고    scopus 로고
    • Noisy iris image matching by using multiple cues
    • T. Tan, X. Zhang, Z. Sun, and H. Zhang Noisy iris image matching by using multiple cues Pattern Recogn. Lett. 33 8 2012 970 977
    • (2012) Pattern Recogn. Lett. , vol.33 , Issue.8 , pp. 970-977
    • Tan, T.1    Zhang, X.2    Sun, Z.3    Zhang, H.4
  • 107
    • 84859162407 scopus 로고    scopus 로고
    • Adaboost and multi-orientation 2D Gabor-based noisy iris recognition
    • Q. Wang, X. Zhang, M. Li, X. Dong, Q. Zhou, and Y. Yin Adaboost and multi-orientation 2D Gabor-based noisy iris recognition Pattern Recogn. Lett. 33 8 2012 978 983
    • (2012) Pattern Recogn. Lett. , vol.33 , Issue.8 , pp. 978-983
    • Wang, Q.1    Zhang, X.2    Li, M.3    Dong, X.4    Zhou, Q.5    Yin, Y.6
  • 108
    • 84859155602 scopus 로고    scopus 로고
    • A fusion approach to unconstrained iris recognition
    • G. Santos, and E. Hoyle A fusion approach to unconstrained iris recognition Pattern Recogn. Lett. 33 8 2012 984 990
    • (2012) Pattern Recogn. Lett. , vol.33 , Issue.8 , pp. 984-990
    • Santos, G.1    Hoyle, E.2
  • 110
    • 84859157170 scopus 로고    scopus 로고
    • Weighted co-occurrence phase histogram for iris recognition
    • P. Li, X. Liu, and N. Zhao Weighted co-occurrence phase histogram for iris recognition Pattern Recogn. Lett. 33 8 2012 1000 1005
    • (2012) Pattern Recogn. Lett. , vol.33 , Issue.8 , pp. 1000-1005
    • Li, P.1    Liu, X.2    Zhao, N.3
  • 111
    • 84859157013 scopus 로고    scopus 로고
    • Noisy iris recognition integrated scheme
    • M. De Marsico, M. Nappi, and D. Riccio Noisy iris recognition integrated scheme Pattern Recogn. Lett. 33 8 2012 1006 1011
    • (2012) Pattern Recogn. Lett. , vol.33 , Issue.8 , pp. 1006-1011
    • De Marsico, M.1    Nappi, M.2    Riccio, D.3
  • 112
    • 84859158334 scopus 로고    scopus 로고
    • Iris recognition in non-ideal imaging conditions
    • P. Li, and H. Ma Iris recognition in non-ideal imaging conditions Pattern Recogn. Lett. 33 8 2012 1012 1018
    • (2012) Pattern Recogn. Lett. , vol.33 , Issue.8 , pp. 1012-1018
    • Li, P.1    Ma, H.2
  • 117
    • 84905969044 scopus 로고    scopus 로고
    • Distance metric learning for recognizing low-resolution iris images
    • J. Liu, Z. Sun, and T. Tan Distance metric learning for recognizing low-resolution iris images Neurocomputing 144 2014 484 492
    • (2014) Neurocomputing , vol.144 , pp. 484-492
    • Liu, J.1    Sun, Z.2    Tan, T.3
  • 119
    • 84875617817 scopus 로고    scopus 로고
    • accessed 15.03.15
    • BATH Iris Database, University of Bath Iris Image Database. 〈http://www.bath.ac.uk/eleceng/research/sipg/irisweb/〉 (accessed 15.03.15).
    • University of Bath Iris Image Database
  • 122
    • 70449732176 scopus 로고    scopus 로고
    • A novel biorthogonal wavelet network system for off-angle iris recognition
    • A. Abhyankar, and S. Schuckers A novel biorthogonal wavelet network system for off-angle iris recognition Pattern Recogn. 43 3 2010 987 1007
    • (2010) Pattern Recogn. , vol.43 , Issue.3 , pp. 987-1007
    • Abhyankar, A.1    Schuckers, S.2
  • 125
    • 77955415829 scopus 로고    scopus 로고
    • Degradation of iris recognition performance due to non-cosmetic prescription contact lenses
    • S.E. Baker, A. Hentz, K.W. Bowyer, and P.J. Flynn Degradation of iris recognition performance due to non-cosmetic prescription contact lenses Comput. Vis. Image Underst. 114 9 2010 1030 1044
    • (2010) Comput. Vis. Image Underst. , vol.114 , Issue.9 , pp. 1030-1044
    • Baker, S.E.1    Hentz, A.2    Bowyer, K.W.3    Flynn, P.J.4
  • 126
    • 79957442949 scopus 로고    scopus 로고
    • How to generate spoofed irises from an iris code template?
    • S. Venugopalan, and M. Savvides How to generate spoofed irises from an iris code template? IEEE Trans. Inf. Forensics Secur. 6 2 2011 385 395
    • (2011) IEEE Trans. Inf. Forensics Secur. , vol.6 , Issue.2 , pp. 385-395
    • Venugopalan, S.1    Savvides, M.2
  • 133
    • 80054910703 scopus 로고    scopus 로고
    • Secure and robust iris recognition using random projections and sparse representations
    • J. Pillai, V. Patel, R. Chellappa, and N. Ratha Secure and robust iris recognition using random projections and sparse representations IEEE Trans. Pattern Anal. Mach. Intell. 33 9 2011 1877 1893
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.9 , pp. 1877-1893
    • Pillai, J.1    Patel, V.2    Chellappa, R.3    Ratha, N.4
  • 136
    • 80052727481 scopus 로고    scopus 로고
    • Iris recognition failure over time: The effects of texture
    • D. Rankin, B. Scotney, P. Morrow, and B. Pierscionek Iris recognition failure over time: the effects of texture Pattern Recogn. 45 1 2012 145 150
    • (2012) Pattern Recogn. , vol.45 , Issue.1 , pp. 145-150
    • Rankin, D.1    Scotney, B.2    Morrow, P.3    Pierscionek, B.4
  • 137
    • 84892383836 scopus 로고    scopus 로고
    • Template aging phenomenon in iris recognition
    • S. Fenker, E. Ortiz, and K. Bowyer Template aging phenomenon in iris recognition IEEE Access 1 2013 266 274
    • (2013) IEEE Access , vol.1 , pp. 266-274
    • Fenker, S.1    Ortiz, E.2    Bowyer, K.3
  • 139
    • 84892385237 scopus 로고    scopus 로고
    • Does iris change over time?
    • H. Mehrotra, M. Vatsa, R. Singh, B. Majhi, Does iris change over time? PloS ONE 8(11), 〈http://dx.doi.org/10.1371/journal.pone.0078333〉.
    • PloS ONE , vol.8 , Issue.11
    • Mehrotra, H.1    Vatsa, M.2    Singh, R.3    Majhi, B.4
  • 141
    • 84872046136 scopus 로고    scopus 로고
    • An optimized wavelength band selection for heavily pigmented iris recognition
    • Y. Gong, D. Zhang, P. Shi, and J. Yan An optimized wavelength band selection for heavily pigmented iris recognition IEEE Trans. Inf. Forensics Secur. 8 1 2013 64 75
    • (2013) IEEE Trans. Inf. Forensics Secur. , vol.8 , Issue.1 , pp. 64-75
    • Gong, Y.1    Zhang, D.2    Shi, P.3    Yan, J.4
  • 146
    • 67349287669 scopus 로고    scopus 로고
    • Iris quality assessment and bi-orthogonal wavelet based encoding for recognition
    • A. Abhyankar, and S. Schuckers Iris quality assessment and bi-orthogonal wavelet based encoding for recognition Pattern Recogn. 42 9 2009 1878 1894
    • (2009) Pattern Recogn. , vol.42 , Issue.9 , pp. 1878-1894
    • Abhyankar, A.1    Schuckers, S.2
  • 149
    • 84892387018 scopus 로고    scopus 로고
    • Template aging in iris biometrics: Evidence of increased false reject rate in ICE 2006
    • S. Baker, K. Bowyer, P. Flynn, and P. Phillips Template aging in iris biometrics: evidence of increased false reject rate in ICE 2006 Handbook Iris Recogn. 2013 205 218
    • (2013) Handbook Iris Recogn. , pp. 205-218
    • Baker, S.1    Bowyer, K.2    Flynn, P.3    Phillips, P.4
  • 151
    • 84929478983 scopus 로고    scopus 로고
    • University of Notre Dame (accessed 15.03.15)
    • ND-Cross Sensor Database, University of Notre Dame. 〈http://www3.nd.edu/cvrl/CVRL/DataSets.html〉 (accessed 15.03.15).
    • ND-Cross Sensor Database
  • 152
    • 77951204854 scopus 로고    scopus 로고
    • Extended-depth-of-field iris recognition using unrestored wavefront-coded imagery
    • V. Boddeti, and B. Kumar Extended-depth-of-field iris recognition using unrestored wavefront-coded imagery IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 40 3 2010 495 508
    • (2010) IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans , vol.40 , Issue.3 , pp. 495-508
    • Boddeti, V.1    Kumar, B.2
  • 154
    • 82055208400 scopus 로고    scopus 로고
    • Quality-driven super-resolution for less constrained iris recognition at a distance and on the move
    • K. Nguyen, C. Fookes, S. Sridharan, and S. Denman Quality-driven super-resolution for less constrained iris recognition at a distance and on the move IEEE Trans. Inf. Forensics Secur. 6 4 2011 1248 1258
    • (2011) IEEE Trans. Inf. Forensics Secur. , vol.6 , Issue.4 , pp. 1248-1258
    • Nguyen, K.1    Fookes, C.2    Sridharan, S.3    Denman, S.4
  • 155
    • 80052544761 scopus 로고    scopus 로고
    • Genetically identical irises have texture similarity that is not detected by iris biometrics
    • K. Hollingsworth, K.W. Bowyer, S. Lagree, S.P. Fenker, and P.J. Flynn Genetically identical irises have texture similarity that is not detected by iris biometrics Comput. Vis. Image Underst. 115 11 2011 1493 1502
    • (2011) Comput. Vis. Image Underst. , vol.115 , Issue.11 , pp. 1493-1502
    • Hollingsworth, K.1    Bowyer, K.W.2    Lagree, S.3    Fenker, S.P.4    Flynn, P.J.5
  • 156
    • 84856345933 scopus 로고    scopus 로고
    • Novel approaches to improve robustness, accuracy and rapidity of iris recognition systems
    • Y. Si, J. Mei, and H. Gao Novel approaches to improve robustness, accuracy and rapidity of iris recognition systems IEEE Trans. Ind. Inf. 8 1 2012 110 117
    • (2012) IEEE Trans. Ind. Inf. , vol.8 , Issue.1 , pp. 110-117
    • Si, Y.1    Mei, J.2    Gao, H.3
  • 157
    • 84856164129 scopus 로고    scopus 로고
    • IrisCode decompression based on the dependence between its bit pairs
    • A.-K. Kong IrisCode decompression based on the dependence between its bit pairs IEEE Trans. Pattern Anal. Mach. Intell. 34 3 2012 506 520
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.3 , pp. 506-520
    • Kong, A.-K.1
  • 158
    • 84866781441 scopus 로고    scopus 로고
    • Iris-biometric comparators: Exploiting comparison scores towards an optimal alignment under Gaussian assumption
    • C. Rathgeb, A. Uhl, P. Wild, Iris-biometric comparators: exploiting comparison scores towards an optimal alignment under Gaussian assumption, in: 5th IAPR International Conference on Biometrics, 2012, pp. 297-302.
    • 5th IAPR International Conference on Biometrics, 2012 , pp. 297-302
    • Rathgeb, C.1    Uhl, A.2    Wild, P.3
  • 159
    • 84885369881 scopus 로고    scopus 로고
    • Iris image reconstruction from binary templates: An efficient probabilistic approach based on genetic algorithms
    • J. Galbally, A. Ross, M. Gomez-Barrero, J. Fierrez, and J. Ortega-Garcia Iris image reconstruction from binary templates: an efficient probabilistic approach based on genetic algorithms Comput. Vis. Image Underst. 117 10 2013 1512 1525
    • (2013) Comput. Vis. Image Underst. , vol.117 , Issue.10 , pp. 1512-1525
    • Galbally, J.1    Ross, A.2    Gomez-Barrero, M.3    Fierrez, J.4    Ortega-Garcia, J.5
  • 169
    • 80255132924 scopus 로고    scopus 로고
    • Appearance-based periocular features in the context of face and non-ideal iris recognition
    • D. Woodard, S. Pundlik, P. Miller, and J. Lyle Appearance-based periocular features in the context of face and non-ideal iris recognition SIViP 5 4 2011 443 455
    • (2011) SIViP , vol.5 , Issue.4 , pp. 443-455
    • Woodard, D.1    Pundlik, S.2    Miller, P.3    Lyle, J.4
  • 171
    • 84860693677 scopus 로고    scopus 로고
    • Unconstrained periocular biometric acquisition and recognition using COTS PTZ camera for uncooperative and non-cooperative subjects
    • F. Juefei-Xu, M. Savvides, Unconstrained periocular biometric acquisition and recognition using COTS PTZ camera for uncooperative and non-cooperative subjects, in: IEEE Workshop on Applications of Computer Vision, 2012, pp. 201-208.
    • IEEE Workshop on Applications of Computer Vision, 2012 , pp. 201-208
    • Juefei-Xu, F.1    Savvides, M.2
  • 172
    • 84883401729 scopus 로고    scopus 로고
    • Compensating for pose and illumination in unconstrained periocular biometrics
    • C.N. Padole, and H. Proença Compensating for pose and illumination in unconstrained periocular biometrics Int. J. Biometrics 5 3 2013 336 359
    • (2013) Int. J. Biometrics , vol.5 , Issue.3 , pp. 336-359
    • Padole, C.N.1    Proença, H.2
  • 173
    • 84918781786 scopus 로고    scopus 로고
    • Periocular biometrics: Constraining the elastic graph matching algorithm to biologically plausible distortions
    • H. Proença, and J.C. Briceño Periocular biometrics: constraining the elastic graph matching algorithm to biologically plausible distortions IET Biometrics 3 2014 167 175 (8)
    • (2014) IET Biometrics , vol.3 , Issue.8 , pp. 167-175
    • Proença, H.1    Briceño, J.C.2
  • 174
    • 84904294496 scopus 로고    scopus 로고
    • Subspace-based discrete transform encoded local binary patterns representations for robust periocular matching on face recognition grand challenge
    • F. Juefei-Xu, and M. Savvides Subspace-based discrete transform encoded local binary patterns representations for robust periocular matching on face recognition grand challenge IEEE Trans. Image Process. 23 8 2014 3490 3505
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.8 , pp. 3490-3505
    • Juefei-Xu, F.1    Savvides, M.2
  • 176
    • 84911077898 scopus 로고    scopus 로고
    • Investigating the periocular-based face recognition across gender transformation
    • G. Mahalingam, K. Ricanek, and A. Albert Investigating the periocular-based face recognition across gender transformation IEEE Trans. Inf. Forensics Secur. 9 12 2014 2180 2192
    • (2014) IEEE Trans. Inf. Forensics Secur. , vol.9 , Issue.12 , pp. 2180-2192
    • Mahalingam, G.1    Ricanek, K.2    Albert, A.3
  • 178
    • 84921755594 scopus 로고    scopus 로고
    • Segmenting the periocular region using a hierarchical graphical model fed by texture/shape information and geometrical constraints
    • H. Proença, J. Neves, G. Santos, Segmenting the periocular region using a hierarchical graphical model fed by texture/shape information and geometrical constraints, in: IEEE International Joint Conference on Biometrics, 2014, pp. 1-7.
    • IEEE International Joint Conference on Biometrics, 2014 , pp. 1-7
    • Proença, H.1    Neves, J.2    Santos, G.3
  • 181
    • 84862158993 scopus 로고    scopus 로고
    • Soft biometric classification using local appearance periocular region features
    • J.R. Lyle, P.E. Miller, S.J. Pundlik, and D.L. Woodard Soft biometric classification using local appearance periocular region features Pattern Recogn. 45 11 2012 3877 3885
    • (2012) Pattern Recogn. , vol.45 , Issue.11 , pp. 3877-3885
    • Lyle, J.R.1    Miller, P.E.2    Pundlik, S.J.3    Woodard, D.L.4
  • 182
    • 33947369065 scopus 로고    scopus 로고
    • Face recognition by humans: Nineteen results all computer vision researchers should know about
    • P. Sinha, B. Balas, Y. Ostrovsky, and R. Russell Face recognition by humans: nineteen results all computer vision researchers should know about Proc. IEEE 94 11 2006 1948 1962
    • (2006) Proc. IEEE , vol.94 , Issue.11 , pp. 1948-1962
    • Sinha, P.1    Balas, B.2    Ostrovsky, Y.3    Russell, R.4
  • 184
    • 80955159706 scopus 로고    scopus 로고
    • Useful features for human verification in near-infrared periocular images
    • K. Hollingsworth, K.W. Bowyer, and P.J. Flynn Useful features for human verification in near-infrared periocular images Image Vis. Comput. 29 11 2011 707 715
    • (2011) Image Vis. Comput. , vol.29 , Issue.11 , pp. 707-715
    • Hollingsworth, K.1    Bowyer, K.W.2    Flynn, P.J.3
  • 192
    • 84888597542 scopus 로고    scopus 로고
    • Complex eye movement pattern biometrics: The effects of environment and stimulus
    • C. Holland, and O. Komogortsev Complex eye movement pattern biometrics: the effects of environment and stimulus IEEE Trans. Inf. Forensics Secur. 8 12 2013 2115 2126
    • (2013) IEEE Trans. Inf. Forensics Secur. , vol.8 , Issue.12 , pp. 2115-2126
    • Holland, C.1    Komogortsev, O.2
  • 193
    • 84856112228 scopus 로고    scopus 로고
    • Eyebrow shape-based features for biometric recognition and gender classification: A feasibility study
    • Y. Dong, D. Woodard, Eyebrow shape-based features for biometric recognition and gender classification: a feasibility study, in: International Joint Conference on Biometrics, 2011, pp. 1-8.
    • International Joint Conference on Biometrics, 2011 , pp. 1-8
    • Dong, Y.1    Woodard, D.2
  • 199
    • 84865598659 scopus 로고    scopus 로고
    • Multispectral scleral patterns for ocular biometric recognition
    • S. Crihalmeanu, and A. Ross Multispectral scleral patterns for ocular biometric recognition Pattern Recogn. Lett. 33 14 2012 1860 1869
    • (2012) Pattern Recogn. Lett. , vol.33 , Issue.14 , pp. 1860-1869
    • Crihalmeanu, S.1    Ross, A.2
  • 200
    • 84856777109 scopus 로고    scopus 로고
    • Biometric identification based on the eye movements and graph matching techniques
    • I. Rigas, G. Economou, and S. Fotopoulos Biometric identification based on the eye movements and graph matching techniques Pattern Recogn. Lett. 33 6 2012 786 792
    • (2012) Pattern Recogn. Lett. , vol.33 , Issue.6 , pp. 786-792
    • Rigas, I.1    Economou, G.2    Fotopoulos, S.3
  • 202
    • 84892631845 scopus 로고    scopus 로고
    • An efficient parallel approach for sclera vein recognition
    • Y. Lin, E. Du, Z. Zhou, and N. Thomas An efficient parallel approach for sclera vein recognition IEEE Trans. Inf. Forensics Secur. 9 2 2014 147 157
    • (2014) IEEE Trans. Inf. Forensics Secur. , vol.9 , Issue.2 , pp. 147-157
    • Lin, Y.1    Du, E.2    Zhou, Z.3    Thomas, N.4
  • 203
    • 84907456208 scopus 로고    scopus 로고
    • Biometric Recognition via Probabilistic Spatial Projection of Eye Movement Trajectories in Dynamic Visual Environments
    • I. Rigas, and O. Komogortsev Biometric Recognition via Probabilistic Spatial Projection of Eye Movement Trajectories in Dynamic Visual Environments IEEE Transactions on Information Forensics and Security 9 10 2014 1743 1754
    • (2014) IEEE Transactions on Information Forensics and Security , vol.9 , Issue.10 , pp. 1743-1754
    • Rigas, I.1    Komogortsev, O.2
  • 204
    • 84920705863 scopus 로고    scopus 로고
    • GANT: Gaze analysis technique for human identification
    • V. Cantoni, C. Galdi, M. Nappi, M. Porta, and D. Riccio GANT: gaze analysis technique for human identification Pattern Recogn. 48 4 2015 1027 1038
    • (2015) Pattern Recogn. , vol.48 , Issue.4 , pp. 1027-1038
    • Cantoni, V.1    Galdi, C.2    Nappi, M.3    Porta, M.4    Riccio, D.5
  • 205
    • 84907486603 scopus 로고    scopus 로고
    • Toward statistical modeling of saccadic eye-movement and visual saliency
    • X. Sun, H. Yao, R. Ji, and X.M. Liu Toward statistical modeling of saccadic eye-movement and visual saliency IEEE Trans. Image Process. 23 11 2014 4649 4662
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.11 , pp. 4649-4662
    • Sun, X.1    Yao, H.2    Ji, R.3    Liu, X.M.4
  • 212
    • 84874567991 scopus 로고    scopus 로고
    • Human identification from at-a-distance images by simultaneously exploiting iris and periocular features
    • C.-W. Tan, A. Kumar, Human identification from at-a-distance images by simultaneously exploiting iris and periocular features, in: 21st International Conference on Pattern Recognition, 2012, pp. 553-556.
    • 21st International Conference on Pattern Recognition, 2012 , pp. 553-556
    • Tan, C.-W.1    Kumar, A.2
  • 221
    • 84908431911 scopus 로고    scopus 로고
    • Ocular Biometrics by Score-Level Fusion of Disparate Experts
    • H. Proença Ocular Biometrics by Score-Level Fusion of Disparate Experts IEEE Transactions on Image Processing 23 12 2014 5082 5093
    • (2014) IEEE Transactions on Image Processing , vol.23 , Issue.12 , pp. 5082-5093
    • Proença, H.1
  • 222
    • 77953727119 scopus 로고    scopus 로고
    • A frequency-based approach for features fusion in fingerprint and iris multimodal biometric identification systems
    • V. Conti, C. Militello, F. Sorbello, and S. Vitabile A frequency-based approach for features fusion in fingerprint and iris multimodal biometric identification systems IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 40 4 2010 384 395
    • (2010) IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. , vol.40 , Issue.4 , pp. 384-395
    • Conti, V.1    Militello, C.2    Sorbello, F.3    Vitabile, S.4
  • 228
    • 70450278881 scopus 로고    scopus 로고
    • A multimodal biometric test bed for quality-dependent, cost-sensitive and client-specific score-level fusion algorithms
    • N. Poh, T. Bourlai, and J. Kittler A multimodal biometric test bed for quality-dependent, cost-sensitive and client-specific score-level fusion algorithms Pattern Recogn. 43 3 2010 1094 1105
    • (2010) Pattern Recogn. , vol.43 , Issue.3 , pp. 1094-1105
    • Poh, N.1    Bourlai, T.2    Kittler, J.3
  • 229
    • 84929454273 scopus 로고    scopus 로고
    • accessed 15.03.15
    • CASIA v5 Fingerprint Database. 〈http://biometrics.idealtest.org/〉 (accessed 15.03.15).
    • CASIA v5 Fingerprint Database
  • 230
    • 84855973748 scopus 로고    scopus 로고
    • Multibiometric cryptosystems based on feature-level fusion
    • A. Nagar, K. Nandakumar, and A. Jain Multibiometric cryptosystems based on feature-level fusion IEEE Trans. Inf. Forensics Secur. 7 1 2012 255 268
    • (2012) IEEE Trans. Inf. Forensics Secur. , vol.7 , Issue.1 , pp. 255-268
    • Nagar, A.1    Nandakumar, K.2    Jain, A.3
  • 234
    • 84872044064 scopus 로고    scopus 로고
    • Recognizing surgically altered face images using multiobjective evolutionary algorithm
    • H. Bhatt, S. Bharadwaj, R. Singh, and M. Vatsa Recognizing surgically altered face images using multiobjective evolutionary algorithm IEEE Trans. Inf. Forensics Secur. 8 1 2013 89 100
    • (2013) IEEE Trans. Inf. Forensics Secur. , vol.8 , Issue.1 , pp. 89-100
    • Bhatt, H.1    Bharadwaj, S.2    Singh, R.3    Vatsa, M.4
  • 238
    • 84929455887 scopus 로고    scopus 로고
    • accessed 15.03.15
    • West Virginia University Off-Angle Dataset. 〈http://www.clarkson.edu/citer/research/collections/wvuoffaxisrelease1.html〉 (accessed 15.03.15).
    • West Virginia University Off-Angle Dataset
  • 242
    • 84929478996 scopus 로고    scopus 로고
    • accessed 15.03.15
    • VeriEye SDK. 〈http://www.neurotechnology.com/verieye.html〉 (accessed 15.03.15).
    • VeriEye SDK1
  • 244
    • 84874370171 scopus 로고    scopus 로고
    • Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades
    • O.V. Komogortsev, and A. Karpov Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades Behav. Res. Methods 45 1 2013 203 215
    • (2013) Behav. Res. Methods , vol.45 , Issue.1 , pp. 203-215
    • Komogortsev, O.V.1    Karpov, A.2
  • 245
    • 58149117608 scopus 로고    scopus 로고
    • Unification of evidence-theoretic fusion algorithms: A case study in level-2 and level-3 fingerprint features
    • M. Vatsa, R. Singh, and A. Noore Unification of evidence-theoretic fusion algorithms: a case study in level-2 and level-3 fingerprint features IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 39 1 2009 47 56
    • (2009) IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans , vol.39 , Issue.1 , pp. 47-56
    • Vatsa, M.1    Singh, R.2    Noore, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.