메뉴 건너뛰기




Volumn 30, Issue 23, 2014, Pages 3349-3355

Cross-validation under separate sampling: Strong bias and how to correct it

Author keywords

[No Author keywords available]

Indexed keywords

TRANSCRIPTOME;

EID: 84929116149     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btu527     Document Type: Article
Times cited : (24)

References (18)
  • 1
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise, C. and McLachlan, G.J. (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl Acad. Sci. USA, 99, 6562-6566.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 2
    • 0001893585 scopus 로고
    • Classification by multivariate analysis
    • Anderson, T. (1951) Classification by multivariate analysis. Psychometrika, 16, 31-50.
    • (1951) Psychometrika , vol.16 , pp. 31-50
    • Anderson, T.1
  • 3
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for microarray classification?
    • Braga-Neto, U. and Dougherty, E. (2004) Is cross-validation valid for microarray classification? Bioinformatics, 20, 374-380.
    • (2004) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.1    Dougherty, E.2
  • 4
    • 34250652449 scopus 로고    scopus 로고
    • Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the transbig multicenter independent validation series
    • Desmedt, C. et al. (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the transbig multicenter independent validation series. Clin. Cancer Res., 13, 3207-3214.
    • (2007) Clin. Cancer Res. , vol.13 , pp. 3207-3214
    • Desmedt, C.1
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T.G. (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn., 40, 139-157.
    • (2000) Mach. Learn. , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 8
    • 84892735645 scopus 로고    scopus 로고
    • Effect of separate sampling on classification accuracy
    • Esfahani, M.S. and Dougherty, E.R. (2014) Effect of separate sampling on classification accuracy. Bioinformatics, 30, 242-250.
    • (2014) Bioinformatics , vol.30 , pp. 242-250
    • Esfahani, M.S.1    Dougherty, E.R.2
  • 9
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • Friedman, N. et al. (1997) Bayesian network classifiers. Mach. Learn., 29, 131-163.
    • (1997) Mach. Learn. , vol.29 , pp. 131-163
    • Friedman, N.1
  • 10
    • 0015876493 scopus 로고
    • Sample-based multinomial classification
    • Glick, N. (1973) Sample-based multinomial classification. Biometrics, 29, 241-256.
    • (1973) Biometrics , vol.29 , pp. 241-256
    • Glick, N.1
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines in machine learning
    • Guyon, I. et al. (2002) Gene selection for cancer classification using support vector machines in machine learning. Mach. Learn., 46, 389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1
  • 12
    • 78049332872 scopus 로고    scopus 로고
    • Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors
    • Haggar, F.A. and Boushey, R.P. (2009) Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin. Colon. Rectal. Surg., 22, 191-197.
    • (2009) Clin. Colon. Rectal. Surg. , vol.22 , pp. 191-197
    • Haggar, F.A.1    Boushey, R.P.2
  • 13
    • 80052461768 scopus 로고    scopus 로고
    • Effect of discretization method on the diagnosis of parkinsons disease
    • Kaya, E. et al. (2011) Effect of discretization method on the diagnosis of parkinsons disease. Int. J. Innov. Comput. Inf., 7, 4669-4678.
    • (2011) Int. J. Innov. Comput. Inf. , vol.7 , pp. 4669-4678
    • Kaya, E.1
  • 14
    • 84879799188 scopus 로고
    • Estimation of error rates in discriminant analysis
    • Lachenbruch, P.A. and Mickey, M.R. (1968) Estimation of error rates in discriminant analysis. Technometrics, 10, 1-11.
    • (1968) Technometrics , vol.10 , pp. 1-11
    • Lachenbruch, P.A.1    Mickey, M.R.2
  • 15
    • 11144358111 scopus 로고    scopus 로고
    • Prognostically useful gene-expression profiles in acute myeloid leukemia
    • Valk, P.J. et al. (2004) Prognostically useful gene-expression profiles in acute myeloid leukemi. N. Engl. J. Med., 350, 1617-1628.
    • (2004) N. Engl. J. Med. , vol.350 , pp. 1617-1628
    • Valk, P.J.1
  • 16
    • 0037675042 scopus 로고    scopus 로고
    • Incidence of Parkinson's disease: Variation by age, gender, and race/ethnicity
    • Van Den Eeden, S.K. et al. (2003) Incidence of parkinson's disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol., 157, 1015-1022.
    • (2003) Am. J. Epidemiol. , vol.157 , pp. 1015-1022
    • Van Den Eeden, S.K.1
  • 17
    • 19044399684 scopus 로고    scopus 로고
    • Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • Yeoh, E.J. et al. (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 1, 133-143.
    • (2002) Cancer Cell , vol.1 , pp. 133-143
    • Yeoh, E.J.1
  • 18
    • 33745779502 scopus 로고    scopus 로고
    • The molecular classification of multiple myeloma
    • Zhan, F. et al. (2006) The molecular classification of multiple myeloma. Blood, 108, 2020-2028.
    • (2006) Blood , vol.108 , pp. 2020-2028
    • Zhan, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.