메뉴 건너뛰기




Volumn 36, Issue 9, 2015, Pages 2438-2459

Influence of acquisition time and resolution on wheat yield estimation at the field scale from canopy biophysical variables retrieved from SPOT satellite data

Author keywords

[No Author keywords available]

Indexed keywords

BIOPHYSICS; CLIMATE MODELS; CROPS; ERROR STATISTICS; FORESTRY; GRAIN (AGRICULTURAL PRODUCT); IMAGE RESOLUTION; LINEAR REGRESSION; MEAN SQUARE ERROR; RADIATIVE TRANSFER; REMOTE SENSING; SATELLITES;

EID: 84928905790     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2015.1041174     Document Type: Article
Times cited : (26)

References (56)
  • 2
    • 0034026627 scopus 로고    scopus 로고
    • Spectral Vegetation Indices as Nondestructive Tools for Determining Durum Wheat Yield
    • Aparicio, N., D. Villegas, J. Casadesus, J. L. Araus, and C. Royo. 2000. “Spectral Vegetation Indices as Nondestructive Tools for Determining Durum Wheat Yield.” Agronomy Journal 92 (1): American Society of Agronomy. 83. doi:10.2134/agronj2000.92183x.
    • (2000) Agronomy Journal , vol.92 , Issue.1 , pp. 83
    • Aparicio, N.1    Villegas, D.2    Casadesus, J.3    Araus, J.L.4    Royo, C.5
  • 3
    • 33751337343 scopus 로고    scopus 로고
    • Neural Network Estimation of LAI, fAPAR, fCover and LAI×Cab, from Top of Canopy MERIS Reflectance Data: Principles and Validation
    • Bacour, C., F. Baret, D. Béal, M. Weiss, and K. Pavageau. 2006. “Neural Network Estimation of LAI, fAPAR, fCover and LAI×Cab, from Top of Canopy MERIS Reflectance Data: Principles and Validation.” Remote Sensing of Environment 105 (4): 313–325. http://www.sciencedirect.com/science/article/pii/S003442570600263X.
    • (2006) Remote Sensing of Environment , vol.105 , Issue.4 , pp. 313-325
    • Bacour, C.1    Baret, F.2    Béal, D.3    Weiss, M.4    Pavageau, K.5
  • 4
    • 54849423012 scopus 로고    scopus 로고
    • Empirical Regression Models Using NDVI, Rainfall and Temperature Data for the Early Prediction of Wheat Grain Yields in Morocco
    • Balaghi, R., B. Tychon, H. Eerens, and M. Jlibene. 2008. “Empirical Regression Models Using NDVI, Rainfall and Temperature Data for the Early Prediction of Wheat Grain Yields in Morocco.” International Journal of Applied Earth Observation and Geoinformation 10 (4): 438–452. doi:10.1016/j.jag.2006.12.001.
    • (2008) International Journal of Applied Earth Observation and Geoinformation , vol.10 , Issue.4 , pp. 438-452
    • Balaghi, R.1    Tychon, B.2    Eerens, H.3    Jlibene, M.4
  • 6
    • 0027010141 scopus 로고
    • Modeled Analysis of the Biophysical Nature of Spectral Shifts and Comparison with Information Content of Broad Bands
    • Baret, F., S. Jacquemoud, G. Guyot, and C. Leprieur. 1992. “Modeled Analysis of the Biophysical Nature of Spectral Shifts and Comparison with Information Content of Broad Bands.” Remote Sensing of Environment 41 (2–3): 133–142. http://www.sciencedirect.com/science/article/pii/003442579290073S.
    • (1992) Remote Sensing of Environment , vol.41 , Issue.2-3 , pp. 133-142
    • Baret, F.1    Jacquemoud, S.2    Guyot, G.3    Leprieur, C.4
  • 7
    • 77949487217 scopus 로고    scopus 로고
    • A Generalized Regression-Based Model for Forecasting Winter Wheat Yields in Kansas and Ukraine Using MODIS Data
    • Becker-Reshef, I., E. Vermote, M. Lindeman, and C. Justice. 2010. “A Generalized Regression-Based Model for Forecasting Winter Wheat Yields in Kansas and Ukraine Using MODIS Data.” Remote Sensing of Environment 114 (6): 1312–1323. http://www.sciencedirect.com/science/article/pii/S0034425710000325.
    • (2010) Remote Sensing of Environment , vol.114 , Issue.6 , pp. 1312-1323
    • Becker-Reshef, I.1    Vermote, E.2    Lindeman, M.3    Justice, C.4
  • 8
    • 0002749353 scopus 로고    scopus 로고
    • Remedial Correction of Yield Map Data
    • Blackmore, S. 1999. “Remedial Correction of Yield Map Data.” Precision Agriculture 1 (1): 53–66. doi:10.1023/A:1009969601387.
    • (1999) Precision Agriculture , vol.1 , Issue.1 , pp. 53-66
    • Blackmore, S.1
  • 10
    • 0036159625 scopus 로고    scopus 로고
    • Identifying Potential Within-Field Management Zones from Cotton-Yield Estimates
    • Boydell, B., and A. B. McBratney. 2002. “Identifying Potential Within-Field Management Zones from Cotton-Yield Estimates.” Precision Agriculture 3 (1): 9–23. doi:10.1023/A:1013318002609.
    • (2002) Precision Agriculture , vol.3 , Issue.1 , pp. 9-23
    • Boydell, B.1    McBratney, A.B.2
  • 11
    • 84881223233 scopus 로고    scopus 로고
    • GEOV1: LAI, FAPAR Essential Climate Variables and FCOVER Global Time Series Capitalizing over Existing Products. Part 2: Validation and Intercomparison with Reference Products
    • Camacho, F., J. Cernicharo, R. Lacaze, F. Baret, and M. Weiss. 2013. “GEOV1: LAI, FAPAR Essential Climate Variables and FCOVER Global Time Series Capitalizing over Existing Products. Part 2: Validation and Intercomparison with Reference Products.” Remote Sensing of Environment 137: 310–329. http://www.sciencedirect.com/science/article/pii/S0034425713000801.
    • (2013) Remote Sensing of Environment , vol.137 , pp. 310-329
    • Camacho, F.1    Cernicharo, J.2    Lacaze, R.3    Baret, F.4    Weiss, M.5
  • 12
    • 80054870545 scopus 로고    scopus 로고
    • Forcing a Wheat Crop Model with LAI Data to Access Agronomic Variables: Evaluation of the Impact of Model and LAI Uncertainties and Comparison with an Empirical Approach
    • Casa, R., H. Varella, S. Buis, M. Guérif, B. De Solan, and F. Baret. 2012. “Forcing a Wheat Crop Model with LAI Data to Access Agronomic Variables: Evaluation of the Impact of Model and LAI Uncertainties and Comparison with an Empirical Approach.” European Journal of Agronomy 37 (1): 1–10. doi:10.1016/j.eja.2011.09.004.
    • (2012) European Journal of Agronomy , vol.37 , Issue.1 , pp. 1-10
    • Casa, R.1    Varella, H.2    Buis, S.3    Guérif, M.4    De Solan, B.5    Baret, F.6
  • 14
    • 0031205919 scopus 로고    scopus 로고
    • A Simplified Approach for Yield Prediction of Sugar Beet Based on Optical Remote Sensing Data
    • Clevers, J. G. P. W. 1997. “A Simplified Approach for Yield Prediction of Sugar Beet Based on Optical Remote Sensing Data.” Remote Sensing of Environment 61 (2): 221–228. http://www.sciencedirect.com/science/article/pii/S0034425797000047.
    • (1997) Remote Sensing of Environment , vol.61 , Issue.2 , pp. 221-228
    • Clevers, J.G.P.W.1
  • 15
    • 84920723169 scopus 로고    scopus 로고
    • Durum Wheat in-Field Monitoring and Early-Yield Prediction: Assessment of Potential Use of High Resolution Satellite Imagery in a Hilly Area of Tuscany, Central Italy
    • Dalla Marta, A., D. Grifoni, M. Mancini, F. Orlando, F. Guasconi, and S. Orlandini. 2013. “Durum Wheat in-Field Monitoring and Early-Yield Prediction: Assessment of Potential Use of High Resolution Satellite Imagery in a Hilly Area of Tuscany, Central Italy.” The Journal of Agricultural Science December. Cambridge University Press. 1–10. doi:10.1017/S0021859613000877.
    • (2013) The Journal of Agricultural Science , pp. 1-10
    • Dalla Marta, A.1    Grifoni, D.2    Mancini, M.3    Orlando, F.4    Guasconi, F.5    Orlandini, S.6
  • 16
    • 40649093793 scopus 로고    scopus 로고
    • Assimilation of Leaf Area Index Derived from ASAR and MERIS Data into CERES-Wheat Model to Map Wheat Yield.” Remote Sensing of Environment 112 (4): 1395–1407
    • Dente, L., G. Satalino, F. Mattia, and M. Rinaldi. 2008. “Assimilation of Leaf Area Index Derived from ASAR and MERIS Data into CERES-Wheat Model to Map Wheat Yield.” Remote Sensing of Environment 112 (4): 1395–1407. http://www.sciencedirect.com/science/article/pii/S0034425707003306
    • (2008)
    • Dente, L.1    Satalino, G.2    Mattia, F.3    Rinaldi, M.4
  • 17
    • 52549118138 scopus 로고    scopus 로고
    • Estimation of Yield Zones Using Aerial Images and Yield Data from a Few Tracks of a Combine Harvester
    • Domsch, H., M. Heisig, and K. Witzke. 2008. “Estimation of Yield Zones Using Aerial Images and Yield Data from a Few Tracks of a Combine Harvester.” Precision Agriculture 9 (5): 321–337. doi:10.1007/s11119-008-9076-y.
    • (2008) Precision Agriculture , vol.9 , Issue.5 , pp. 321-337
    • Domsch, H.1    Heisig, M.2    Witzke, K.3
  • 18
    • 77950469374 scopus 로고    scopus 로고
    • GMES Sentinel-2 Mission Requirements Document
    • Drusch, M., F. Gascon, and M. Berger. 2010. “GMES Sentinel-2 Mission Requirements Document.” European Space Agency. Ref. EOP-SM/1163/MR-dr (2) revision 1. 31p. European Space Agency. http://esamultimedia.esa.int/docs/GMES/Sentinel-2_MRD.pdf
    • (2010) European Space Agency. Ref. EOP-SM/1163/MR-dr
    • Drusch, M.1    Gascon, F.2    Berger, M.3
  • 21
    • 84864187384 scopus 로고    scopus 로고
    • Forest Biomass Estimation from Airborne LiDAR Data Using Machine Learning Approaches
    • Gleason, C. J., and J. Im. 2012. “Forest Biomass Estimation from Airborne LiDAR Data Using Machine Learning Approaches.” Remote Sensing of Environment 125: 80–91. http://www.sciencedirect.com/science/article/pii/S0034425712002787.
    • (2012) Remote Sensing of Environment , vol.125 , pp. 80-91
    • Gleason, C.J.1    Im, J.2
  • 22
    • 0242628227 scopus 로고    scopus 로고
    • IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), IEEE
    • Gleyzes, J.-P., A. Meygret, C. Fratter, C. Panem, S. Baillarin, and C. Valorge. 2013. “SPOT5: System Overview and Image Ground Segment.” In IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), 1:300–302. IEEE. doi:10.1109/IGARSS.2003.1293756.
    • (2013) SPOT5: System Overview and Image Ground Segment , vol.1 , pp. 300-302
    • Gleyzes, J.-P.1    Meygret, A.2    Fratter, C.3    Panem, C.4    Baillarin, S.5    Valorge, C.6
  • 25
    • 84859867127 scopus 로고    scopus 로고
    • Using Leaf Area Index, Retrieved from Optical Imagery, in the STICS Crop Model for Predicting Yield and Biomass of Field Crops
    • Jégo, G., E. Pattey, and J. Liu. 2012. “Using Leaf Area Index, Retrieved from Optical Imagery, in the STICS Crop Model for Predicting Yield and Biomass of Field Crops.” Field Crops Research 131: 63–74. http://www.sciencedirect.com/science/article/pii/S0378429012000585.
    • (2012) Field Crops Research , vol.131 , pp. 63-74
    • Jégo, G.1    Pattey, E.2    Liu, J.3
  • 26
    • 84888050432 scopus 로고    scopus 로고
    • An Assessment of Pre- and within-Season Remotely Sensed Variables for Forecasting Corn and Soybean Yields in the United States
    • Feb
    • Johnson, D. M. 2014. “An Assessment of Pre- and within-Season Remotely Sensed Variables for Forecasting Corn and Soybean Yields in the United States.” Remote Sensing of Environment 141 (Feb.): 116–128. doi:10.1016/j.rse.2013.10.027.
    • (2014) Remote Sensing of Environment , vol.141 , pp. 116-128
    • Johnson, D.M.1
  • 30
    • 84884128504 scopus 로고    scopus 로고
    • High Resolution 3D Mapping of Soil Organic Carbon in a Heterogeneous Agricultural Landscape
    • Lacoste, M., B. Minasny, A. McBratney, D. Michot, V. Viaud, and C. Walter. 2014. “High Resolution 3D Mapping of Soil Organic Carbon in a Heterogeneous Agricultural Landscape.” Geoderma 213: 296–311. http://www.sciencedirect.com/science/article/pii/S0016706113002358.
    • (2014) Geoderma , vol.213 , pp. 296-311
    • Lacoste, M.1    Minasny, B.2    McBratney, A.3    Michot, D.4    Viaud, V.5    Walter, C.6
  • 33
    • 78349303645 scopus 로고    scopus 로고
    • Inversion of a Canopy Reflectance Model Using Hyperspectral Imagery for Monitoring Wheat Growth and Estimating Yield
    • Migdall, S., H. Bach, J. Bobert, M. Wehrhan, and W. Mauser. 2009. “Inversion of a Canopy Reflectance Model Using Hyperspectral Imagery for Monitoring Wheat Growth and Estimating Yield.” Precision Agriculture 10 (6): 508–524. doi:10.1007/s11119-009-9104-6.
    • (2009) Precision Agriculture , vol.10 , Issue.6 , pp. 508-524
    • Migdall, S.1    Bach, H.2    Bobert, J.3    Wehrhan, M.4    Mauser, W.5
  • 34
    • 39149092798 scopus 로고    scopus 로고
    • Data assimilation with crop models
    • Wallach D., Makowski D., Jones J., (eds), Amsterdam: Elsevier
    • Makowski, D., M. Guérif, J. Jones and W. Graham. 2006. “Data assimilation with crop models.” In Working with Dynamic Crop Models, edited by D. Wallach, D. Makowski and J. Jones, 151–172. Amsterdam: Elsevier.
    • (2006) Working with Dynamic Crop Models , pp. 151-172
    • Makowski, D.1    Guérif, M.2    Jones, J.3    Graham, W.4
  • 35
    • 50249188241 scopus 로고    scopus 로고
    • Regression Rules as a Tool for Predicting Soil Properties from Infrared Reflectance Spectroscopy
    • Minasny, B., and A. B. McBratney. 2008. “Regression Rules as a Tool for Predicting Soil Properties from Infrared Reflectance Spectroscopy.” Chemometrics and Intelligent Laboratory Systems. 94. http://www.sciencedirect.com/science/article/pii/S0169743908001093.
    • (2008) Chemometrics and Intelligent Laboratory Systems , vol.94
    • Minasny, B.1    McBratney, A.B.2
  • 37
    • 0031228124 scopus 로고    scopus 로고
    • Opportunities and Limitations for Image-Based Remote Sensing in Precision Crop Management
    • Moran, M. S., Y. Inoue, and E. M. Barnes. 1997. “Opportunities and Limitations for Image-Based Remote Sensing in Precision Crop Management.” Remote Sensing of Environment 61 (3): 319–346. http://www.sciencedirect.com/science/article/pii/S003442579700045X.
    • (1997) Remote Sensing of Environment , vol.61 , Issue.3 , pp. 319-346
    • Moran, M.S.1    Inoue, Y.2    Barnes, E.M.3
  • 38
    • 33847325765 scopus 로고    scopus 로고
    • A Simple Model of Regional Wheat Yield Based on NDVI Data
    • Moriondo, M., F. Maselli, and M. Bindi. 2007. “A Simple Model of Regional Wheat Yield Based on NDVI Data.” European Journal of Agronomy 26 (3): 266–274. http://www.sciencedirect.com/science/article/pii/S1161030106001390.
    • (2007) European Journal of Agronomy , vol.26 , Issue.3 , pp. 266-274
    • Moriondo, M.1    Maselli, F.2    Bindi, M.3
  • 39
    • 84858736330 scopus 로고    scopus 로고
    • Monitoring Regional Wheat Yield in Southern Spain Using the GRAMI Model and Satellite Imagery
    • Padilla, F. L. M., S. J. Maas, M. P. González-Dugo, F. Mansilla, N. Rajan, P. Gavilán, and J. Domínguez. 2012. “Monitoring Regional Wheat Yield in Southern Spain Using the GRAMI Model and Satellite Imagery.” Field Crops Research 130: 145–154. http://www.sciencedirect.com/science/article/pii/S0378429012000731.
    • (2012) Field Crops Research , vol.130 , pp. 145-154
    • Padilla, F.L.M.1    Maas, S.J.2    González-Dugo, M.P.3    Mansilla, F.4    Rajan, N.5    Gavilán, P.6    Domínguez, J.7
  • 41
    • 77956677433 scopus 로고    scopus 로고
    • Sunflower Yield Related to Multi-Temporal Aerial Photography, Land Elevation and Weed Infestation
    • Peña-Barragán, J. M., F. López-Granados, M. Jurado-Expósito, and L. García-Torres. 2010. “Sunflower Yield Related to Multi-Temporal Aerial Photography, Land Elevation and Weed Infestation.” Precision Agriculture 11 (5): 568–585. doi:10.1007/s11119-009-9149-6.
    • (2010) Precision Agriculture , vol.11 , Issue.5 , pp. 568-585
    • Peña-Barragán, J.M.1    López-Granados, F.2    Jurado-Expósito, M.3    García-Torres, L.4
  • 42
    • 62849126565 scopus 로고    scopus 로고
    • Statistical Spring Wheat Yield Forecasting for the Canadian Prairie Provinces
    • Qian, B., R. De Jong, R. Warren, A. Chipanshi, and H. Hill. 2009. “Statistical Spring Wheat Yield Forecasting for the Canadian Prairie Provinces.” Agricultural and Forest Meteorology 149 (6–7): 1022–1031. http://www.sciencedirect.com/science/article/pii/S0168192308003547.
    • (2009) Agricultural and Forest Meteorology , vol.149 , Issue.6-7 , pp. 1022-1031
    • Qian, B.1    De Jong, R.2    Warren, R.3    Chipanshi, A.4    Hill, H.5
  • 45
    • 0028183911 scopus 로고
    • SMAC: A Simplified Method for the Atmospheric Correction of Satellite Measurements in the Solar Spectrum
    • Rahman, H., and G. Dedieu. 1994. “SMAC: A Simplified Method for the Atmospheric Correction of Satellite Measurements in the Solar Spectrum.” International Journal of Remote Sensing 15 (1): 123–143. doi:10.1080/01431169408954055.
    • (1994) International Journal of Remote Sensing , vol.15 , Issue.1 , pp. 123-143
    • Rahman, H.1    Dedieu, G.2
  • 48
    • 34548321865 scopus 로고    scopus 로고
    • Use of Remote Sensing Data for Estimation of Winter Wheat Yield in the United States
    • Salazar, L., F. Kogan, and L. Roytman. 2007. “Use of Remote Sensing Data for Estimation of Winter Wheat Yield in the United States.” International Journal of Remote Sensing 28 (17): 3795–3811. doi:10.1080/01431160601050395.
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.17 , pp. 3795-3811
    • Salazar, L.1    Kogan, F.2    Roytman, L.3
  • 49
    • 84879224083 scopus 로고    scopus 로고
    • Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy
    • Stevens, A., M. Nocita, G. Tóth, L. Montanarella, and B. van Wesemael. 2013. “Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy.” Edited by Han YH. Chen. PloS One 8 (6): Public Library of Science. e66409. doi:10.1371/journal.pone.0066409.
    • (2013) PloS One , vol.8 , Issue.6 , pp. e66409
    • Stevens, A.1    Nocita, M.2    Tóth, G.3    Montanarella, L.4    van Wesemael, B.5
  • 53
    • 34548012350 scopus 로고    scopus 로고
    • LAI and fAPAR CYCLOPES Global Products Derived from VEGETATION. Part 2: Validation and Comparison with MODIS Collection 4 Products
    • Weiss, M., F. Baret, S. Garrigues, and R. Lacaze. 2007. “LAI and fAPAR CYCLOPES Global Products Derived from VEGETATION. Part 2: Validation and Comparison with MODIS Collection 4 Products.” Remote Sensing of Environment 110 (3): 317–331. http://www.sciencedirect.com/science/article/pii/S0034425707000910.
    • (2007) Remote Sensing of Environment , vol.110 , Issue.3 , pp. 317-331
    • Weiss, M.1    Baret, F.2    Garrigues, S.3    Lacaze, R.4
  • 54
    • 33847713277 scopus 로고    scopus 로고
    • Variability in the Duration of Stem Elongation in Wheat and Barley Genotypes
    • Whitechurch, E. M., G. A. Slafer, and D. J. Miralles. 2007. “Variability in the Duration of Stem Elongation in Wheat and Barley Genotypes.” Journal of Agronomy and Crop Science 193 (2): 138–145. doi:10.1111/j.1439-037X.2007.00260.x.
    • (2007) Journal of Agronomy and Crop Science , vol.193 , Issue.2 , pp. 138-145
    • Whitechurch, E.M.1    Slafer, G.A.2    Miralles, D.J.3
  • 55
    • 0033732170 scopus 로고    scopus 로고
    • Mapping Grain Sorghum Yield Variability Using Airborne Digital Videography
    • Yang, C., and G. L. Anderson. 2000. “Mapping Grain Sorghum Yield Variability Using Airborne Digital Videography.” Precision Agriculture 2 (1): 7–23. doi:10.1023/A:1009928431735.
    • (2000) Precision Agriculture , vol.2 , Issue.1 , pp. 7-23
    • Yang, C.1    Anderson, G.L.2
  • 56
    • 34447118981 scopus 로고    scopus 로고
    • Prediction of Citrus Yield from Airborne Hyperspectral Imagery
    • Ye, X., K. Sakai, M. Manago, S. Asada, and A. Sasao. 2007. “Prediction of Citrus Yield from Airborne Hyperspectral Imagery.” Precision Agriculture 8 (3): 111–125. doi:10.1007/s11119-007-9032-2.
    • (2007) Precision Agriculture , vol.8 , Issue.3 , pp. 111-125
    • Ye, X.1    Sakai, K.2    Manago, M.3    Asada, S.4    Sasao, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.