메뉴 건너뛰기




Volumn , Issue , 2014, Pages 174-177

Pervasive eating habits monitoring and recognition through a wearable acoustic sensor?

Author keywords

Eating habit; Feature extraction; KNN; SVM

Indexed keywords

ACOUSTIC WAVES; DIAGNOSIS; FEATURE EXTRACTION; MHEALTH; NEAREST NEIGHBOR SEARCH; SMARTPHONES; SUPPORT VECTOR MACHINES; UBIQUITOUS COMPUTING;

EID: 84928881593     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.4108/icst.pervasivehealth.2014.255423     Document Type: Conference Paper
Times cited : (15)

References (24)
  • 1
    • 79951919031 scopus 로고    scopus 로고
    • A wearable earpad sensor for chewinging monitoring
    • O. Amft. A wearable earpad sensor for chewinging monitoring. IEEE Sensor Conference, 2010.
    • (2010) IEEE Sensor Conference
    • Amft, O.1
  • 3
    • 84928918123 scopus 로고    scopus 로고
    • Automatic identification of temporal sequences in chewinging sounds
    • O. Amft, M. Kusserow, and G. Troster. Automatic identification of temporal sequences in chewinging sounds. BIBM, 2010.
    • (2010) BIBM
    • Amft, O.1    Kusserow, M.2    Troster, G.3
  • 4
    • 4644220755 scopus 로고    scopus 로고
    • Activity recognition from user-annotated acceleration data
    • L. Bao and S. Intille. Activity recognition from user-annotated acceleration data. Pervasive Comput., 2004.
    • (2004) Pervasive Comput.
    • Bao, L.1    Intille, S.2
  • 5
    • 1542389182 scopus 로고    scopus 로고
    • Why should we study human food intake behaviour?
    • F. Bellisle. Why should we study human food intake behaviour? Nutr Metab Cardiovasc Dis., 13(4), 2003.
    • (2003) Nutr Metab Cardiovasc Dis. , vol.13 , Issue.4
    • Bellisle, F.1
  • 7
    • 0033997387 scopus 로고    scopus 로고
    • Principal component analysis of chewinging sounds to detect differences in apple crispness
    • N. DeBelie and V. D. Smedt. Principal component analysis of chewinging sounds to detect differences in apple crispness. Postharvest Biol Technol, 18, 2000.
    • (2000) Postharvest Biol Technol , vol.18
    • Debelie, N.1    Smedt, V.D.2
  • 8
    • 84981850139 scopus 로고
    • Food crushing sounds. An introductory study
    • B. Drake. Food crushing sounds. an introductory study. J Food Sci, 28(2), 1963.
    • (1963) J Food Sci , vol.28 , Issue.2
    • Drake, B.1
  • 9
    • 84928883501 scopus 로고    scopus 로고
    • No contact-type chewinging number counting equipment using infrared sensor
    • K. O. et al
    • K. O. et al. No contact-type chewinging number counting equipment using infrared sensor. T. SICE, 38(9), 2002.
    • (2002) T. SICE , vol.38 , Issue.9
  • 10
    • 80051946356 scopus 로고    scopus 로고
    • Wearable eating habit sensing system using internal body sound
    • M. S. et al
    • M. S. et al. Wearable eating habit sensing system using internal body sound. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 4(1), 2010.
    • (2010) Journal of Advanced Mechanical Design, Systems, and Manufacturing , vol.4 , Issue.1
  • 11
    • 34547992213 scopus 로고    scopus 로고
    • Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis
    • R. Z. et al
    • R. Z. et al. Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007.
    • (2007) IEEE/ACM Transactions on Computational Biology and Bioinformatics
  • 15
    • 0002432989 scopus 로고
    • Analysis of food crushing sound during mastication: Frequency-time studies
    • W. L. III, A. Deibel, C. Glembin, and E. Munday. Analysis of food crushing sound during mastication: Frequency-time studies. Journal of Texture Studies, 19(1), 1988.
    • (1988) Journal of Texture Studies , vol.19 , Issue.1
    • Deibel, W.L.A.1    Glembin, C.2    Munday, E.3
  • 16
    • 84928918127 scopus 로고    scopus 로고
    • New healthcare society supported by wearable sensors and information mapping based services
    • G. Lopez and I. Yamada. New healthcare society supported by wearable sensors and information mapping based services. WIVE, 2009.
    • (2009) WIVE
    • Lopez, G.1    Yamada, I.2
  • 17
    • 78650844992 scopus 로고    scopus 로고
    • Detection of periods of food intake using support vector machines
    • P. Lopez-Meyer, S. Schuckers, O. Makeyev, and E. Sazonov. Detection of periods of food intake using support vector machines. EMBS, 2010.
    • (2010) EMBS
    • Lopez-Meyer, P.1    Schuckers, S.2    Makeyev, O.3    Sazonov, E.4
  • 18
    • 51649124489 scopus 로고    scopus 로고
    • Eating habits monitoring using wireless wearable in-ear microphone
    • J. Nishimura and T. Kuroda. Eating habits monitoring using wireless wearable in-ear microphone. ISWPC, 2008.
    • (2008) ISWPC
    • Nishimura, J.1    Kuroda, T.2
  • 19
    • 34249813319 scopus 로고    scopus 로고
    • Activity recognition from accelerometer data
    • P.M.
    • N. Ravi, N. Dandekar, and P. M. et al. Activity recognition from accelerometer data. AAAI, 2005.
    • (2005) AAAI
    • Ravi, N.1    Dandekar, N.2
  • 21
    • 0002648330 scopus 로고    scopus 로고
    • Controlling the sensitivity of support vector machines
    • K. Veropoulos, C. Campbell, and N. Cristianini. Controlling the sensitivity of support vector machines. IJCAI, 1999.
    • (1999) IJCAI
    • Veropoulos, K.1    Campbell, C.2    Cristianini, N.3
  • 22
    • 0346578293 scopus 로고
    • Food sounds: How much information do they contain?
    • Z. M. Vickers. Food sounds: How much information do they contain? J Food Sci, 45(6), 1980.
    • (1980) J Food Sci , vol.45 , Issue.6
    • Vickers, Z.M.1
  • 23
    • 57649167566 scopus 로고    scopus 로고
    • Feature selection for swallowinging sounds classification
    • A. Yadollahi and Z. Moussavi. Feature selection for swallowinging sounds classification. EMBC, 2007.
    • (2007) EMBC
    • Yadollahi, A.1    Moussavi, Z.2
  • 24
    • 84923739550 scopus 로고    scopus 로고
    • A feature selection-based framework for human activity recognition using wearable multimodal sensors
    • M. Zhang and A. Sawchuk. A feature selection-based framework for human activity recognition using wearable multimodal sensors. BODYNETS, 2011.
    • (2011) BODYNETS
    • Zhang, M.1    Sawchuk, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.