메뉴 건너뛰기




Volumn 29, Issue 2, 2015, Pages

Sparse and low-rank coupling image segmentation model via nonconvex regularization

Author keywords

augmented Lagrange multiplier; Image segmentation; low rank representation; nonconvex regularization; sparse representation

Indexed keywords

LAGRANGE MULTIPLIERS; LEARNING TO RANK;

EID: 84928485215     PISSN: 02180014     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218001415550046     Document Type: Article
Times cited : (28)

References (34)
  • 1
    • 34948898079 scopus 로고    scopus 로고
    • Image segmentation by probabilistic bottom-up aggregation and cue integration
    • S. Alpert et al., Image segmentation by probabilistic bottom-up aggregation and cue integration, IEEE Conf. Comput. Vis. Patt. Recogn. (2007), pp. 1-8.
    • (2007) IEEE Conf. Comput. Vis. Patt. Recogn. , pp. 1-8
    • Alpert, S.1
  • 2
    • 84927751020 scopus 로고    scopus 로고
    • From contours to regions: An empirical evaluation
    • P. Arbelaez et al., From contours to regions: An empirical evaluation, IEEE Conf. Comput. Vis. Patt. Recogn. (2009), pp. 2294-2301.
    • (2009) IEEE Conf. Comput. Vis. Patt. Recogn. , pp. 2294-2301
    • Arbelaez, P.1
  • 3
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • E. J. Candes and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math. 9(6) (2009) 717-772.
    • (2009) Found. Comput. Math. , vol.9 , Issue.6 , pp. 717-772
    • Candes, E.J.1    Recht, B.2
  • 4
    • 58149494138 scopus 로고    scopus 로고
    • Spectral curvature clustering (SCC)
    • G. Chen and G. Lerman, Spectral curvature clustering (SCC), Int. J. Comput. Vis. 81(3) (2009) 317-330.
    • (2009) Int. J. Comput. Vis. , vol.81 , Issue.3 , pp. 317-330
    • Chen, G.1    Lerman, G.2
  • 5
    • 78149326445 scopus 로고    scopus 로고
    • Bound theory of nonzero entries in solutions of L2-Lp minimization
    • X. Chen, F. Xu and Y. Ye, Lower bound theory of nonzero entries in solutions of L2-Lp minimization, SIAM J. Sci. Comput. 32(5) (2010) 2832-2852.
    • (2010) SIAM J. Sci. Comput. , vol.32 , Issue.5 , pp. 2832-2852
    • Chen, X.1    Xu, F.2    Ye Lower, Y.3
  • 6
    • 84863052482 scopus 로고    scopus 로고
    • Multi-task low-rank affinity pursuit for image segmentation
    • (IEEE
    • B. Cheng et al., Multi-task low-rank affinity pursuit for image segmentation, IEEE Int. Conf. Comput. Vis. (IEEE, 2011), pp. 2439-2446.
    • (2011) IEEE Int. Conf. Comput. Vis. , pp. 2439-2446
    • Cheng, B.1
  • 7
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis, IEEE Trans. Patt. Anal. Mach. Intell. 24(5) (2002) 603-619.
    • (2002) IEEE Trans. Patt. Anal. Mach. Intell. , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 8
    • 84859081900 scopus 로고    scopus 로고
    • Interactive image segmentation using Dirichlet process multiple-view learning
    • L. Ding, A. Yilmaz and R. Yan, Interactive image segmentation using Dirichlet process multiple-view learning, IEEE Trans. Image Process. 21(4) (2012) 2119-2129.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.4 , pp. 2119-2129
    • Ding, L.1    Yilmaz, A.2    Yan, R.3
  • 9
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal L1 norm solution is also the sparsest solution
    • D. L. Donoho, For most large underdetermined systems of linear equations the minimal L1 norm solution is also the sparsest solution, Commun. Pure Appl. Math. 59(6) (2006) 797-829.
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.6 , pp. 797-829
    • Donoho, D.L.1
  • 10
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal L1 norm solution is also the sparsest solution
    • D. L. Donoho, For most large underdetermined systems of linear equations the minimal L1 norm solution is also the sparsest solution, Commun. Pure Appl. Math. 59(6) (2006) 797-829.
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.6 , pp. 797-829
    • Donoho, D.L.1
  • 13
    • 0344982828 scopus 로고    scopus 로고
    • Texture segmentation by multiscale aggregation of ¯lter responses and shape elements
    • (IEEE
    • M. Galun et al., Texture segmentation by multiscale aggregation of ¯lter responses and shape elements, Ninth IEEE Int. Conf. Comput. Vis. (IEEE, 2003), pp. 716-723.
    • (2003) Ninth IEEE Int. Conf. Comput. Vis. , pp. 716-723
    • Galun, M.1
  • 14
    • 77953190742 scopus 로고    scopus 로고
    • Spectral clustering of linear subspaces for motion segmentation
    • F. Lauer and C. Schnorr, Spectral clustering of linear subspaces for motion segmentation, IEEE 12th Int. Conf. Comput. Vis. (2009).
    • (2009) IEEE 12th Int. Conf. Comput. Vis.
    • Lauer, F.1    Schnorr, C.2
  • 15
    • 84870197517 scopus 로고    scopus 로고
    • Robust recovery of subspace structures by low-rank representation
    • G. Liu et al., Robust recovery of subspace structures by low-rank representation, IEEE Trans. Patt. Anal. Mach. Intell. 35(1) (2013) 171-184.
    • (2013) IEEE Trans. Patt. Anal. Mach. Intell. , vol.35 , Issue.1 , pp. 171-184
    • Liu, G.1
  • 16
    • 78651593506 scopus 로고    scopus 로고
    • A multiphase image segmentation method based on fuzzy region competition
    • F. Li, L. Fang et al., A multiphase image segmentation method based on fuzzy region competition, SIAM J. Imag. Sci. 3(3) (2010) 277-299.
    • (2010) SIAM J. Imag. Sci. , vol.3 , Issue.3 , pp. 277-299
    • Li, F.1    Fang, L.2
  • 18
    • 77956529193 scopus 로고    scopus 로고
    • Robust subspace segmentation by low-rank representation
    • ACM
    • G. Liu, Z. Lin and Y. Yu, Robust subspace segmentation by low-rank representation, Proc. 27th Int. Conf. Mach. Learn. (ACM, 2010), pp. 663-670.
    • (2010) Proc. 27th Int. Conf. Mach. Learn. , pp. 663-670
    • Liu, G.1    Lin, Z.2    Yu, Y.3
  • 19
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features, Seventh
    • (IEEE
    • D. G. Lowe, Object recognition from local scale-invariant features, Seventh IEEE Int. Conf. Comput. Vis. Vol. 2 (IEEE, 1999), pp. 1150-1157.
    • (1999) IEEE Int. Conf. Comput. Vis. , vol.2 , pp. 1150-1157
    • Lowe, D.G.1
  • 20
    • 84867854316 scopus 로고    scopus 로고
    • Robust and efficient sub-space segmentation via least squares regression
    • Springer, Berlin, Heidelberg
    • C.-Y. Lu et al., Robust and efficient sub-space segmentation via least squares regression, Comput. VisionCECCV (Springer, Berlin, Heidelberg, 2012), pp. 347-360.
    • (2012) Comput. VisionCECCV , pp. 347-360
    • Lu, C.-Y.1
  • 22
    • 5044220774 scopus 로고    scopus 로고
    • Recovering human body con¯gurations: Combining segmentation and recognition
    • (IEEE
    • G. Mori et al., Recovering human body con¯gurations: Combining segmentation and recognition, IEEE Conf. Comput. Vis. Patt. Recogn. Vol. 2 (IEEE, 2004), pp. II-326-II-333.
    • (2004) IEEE Conf. Comput. Vis. Patt. Recogn. , vol.2 , pp. II326-II333
    • Mori, G.1
  • 25
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. M. Rand, Objective criteria for the evaluation of clustering methods, J. Am. Stat. Assoc. 66(336) (1971) 846-850.
    • (1971) J. Am. Stat. Assoc. , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 26
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
    • B. Recht, M. Fazel and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev. 52(3) (2010) 471-501.
    • (2010) SIAM Rev. , vol.52 , Issue.3 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.A.3
  • 27
    • 33745918333 scopus 로고    scopus 로고
    • Scale-invariant contour completion using conditional random ¯elds
    • (IEEE
    • X. Ren, C. C. Fowlkes and J. Malik, Scale-invariant contour completion using conditional random ¯elds, Tenth IEEE Int. Conf. Comput. Vis., Vol. 2 (IEEE, 2005), pp. 1214-1221.
    • (2005) Tenth IEEE Int. Conf. Comput. Vis. , vol.2 , pp. 1214-1221
    • Ren, X.1    Fowlkes, C.C.2    Malik, J.3
  • 29
    • 34948900352 scopus 로고    scopus 로고
    • An evolutionary algorithm for global optimization based on levelset evolution and latin squares
    • Y. Wang and C. Dang, An evolutionary algorithm for global optimization based on levelset evolution and latin squares, IEEE Trans. Evol. Comput. 11(5) (2007) 579-595.
    • (2007) IEEE Trans. Evol. Comput. , vol.11 , Issue.5 , pp. 579-595
    • Wang, Y.1    Dang, C.2
  • 30
    • 18544384528 scopus 로고    scopus 로고
    • An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme
    • Y. Wang, Y.-C. Jiao and H. Li, An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme, IEEE Trans. Syst. Man Cybern. Part C 35(2) (2005) 221-232.
    • (2005) IEEE Trans. Syst. Man Cybern. Part C , vol.35 , Issue.2 , pp. 221-232
    • Wang, Y.1    Jiao, Y.-C.2    Li, H.3
  • 31
    • 84871085657 scopus 로고    scopus 로고
    • L1=2 regularization: A thresholding representation theory and a fast solver
    • Z. Xu et al., L1=2 regularization: A thresholding representation theory and a fast solver, IEEE Trans. Neural Netw. Learn. Syst. 23(7) (2012) 1013-1027.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.7 , pp. 1013-1027
    • Xu, Z.1
  • 32
    • 84865551389 scopus 로고    scopus 로고
    • Representative of L1=2 regularization among Lq0 ≤ q-1regularizations: An experimental study based on phase diagram
    • Z. Xu et al., Representative of L1=2 regularization among Lq0 33.Z. Xu et al., L1=2 regularization, Sci. China-Information Sci.53(6) (2010)1159-1169
    • (2012) Acta Automatica Sinica , vol.38 , Issue.7 , pp. 1225-1228
    • Xu, Z.1
  • 33
    • 84860280270 scopus 로고    scopus 로고
    • L1=2 regularization
    • Z. Xu et al., L1=2 regularization, Sci. China-Information Sci. 53(6) (2010) 1159-1169.
    • (2010) Sci. China-Information Sci. , vol.53 , Issue.6 , pp. 1159-1169
    • Xu, Z.1
  • 34
    • 84866660023 scopus 로고    scopus 로고
    • Non-negative low rank and sparse graph for semi-supervised learning
    • L. Zhuang et al., Non-negative low rank and sparse graph for semi-supervised learning, IEEE Conf. Comput. Vis. Patt. Recogn. (2012), pp. 2328-2335.
    • (2012) IEEE Conf. Comput. Vis. Patt. Recogn. , pp. 2328-2335
    • Zhuang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.