메뉴 건너뛰기




Volumn 84, Issue , 2015, Pages 419-431

Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection

Author keywords

Feature selection; Firefly algorithm; Interval load forecasting; Memetic algorithms; Multi output support vector regression

Indexed keywords

BIOLUMINESCENCE; ELECTRIC LOAD MANAGEMENT; ELECTRIC POWER PLANT LOADS; ELECTRIC POWER SYSTEM PLANNING; FEATURE EXTRACTION; FORECASTING; GENETIC ALGORITHMS; SUPPORT VECTOR REGRESSION;

EID: 84928419830     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2015.03.054     Document Type: Article
Times cited : (111)

References (58)
  • 1
    • 79955543633 scopus 로고    scopus 로고
    • Midterm demand prediction of electrical power systems using a new hybrid forecast technique
    • Amjady N., Daraeepour A. Midterm demand prediction of electrical power systems using a new hybrid forecast technique. IEEE Trans Power Syst 2011, 26(2):755-767.
    • (2011) IEEE Trans Power Syst , vol.26 , Issue.2 , pp. 755-767
    • Amjady, N.1    Daraeepour, A.2
  • 2
    • 79959375525 scopus 로고    scopus 로고
    • Medium-term electric load forecasting using singular value decomposition
    • Abu-Shikhah N., Elkarmi F. Medium-term electric load forecasting using singular value decomposition. Energy 2011, 36(7):4259-4271.
    • (2011) Energy , vol.36 , Issue.7 , pp. 4259-4271
    • Abu-Shikhah, N.1    Elkarmi, F.2
  • 3
    • 49049096107 scopus 로고    scopus 로고
    • Mid-term load forecasting of power systems by a new prediction method
    • Amjady N., Keynia F. Mid-term load forecasting of power systems by a new prediction method. Energy Convers Manage 2008, 49(10):2678-2687.
    • (2008) Energy Convers Manage , vol.49 , Issue.10 , pp. 2678-2687
    • Amjady, N.1    Keynia, F.2
  • 4
    • 31344476313 scopus 로고    scopus 로고
    • Medium term system load forecasting with a dynamic artificial neural network model
    • Ghiassi M., Zimbra D.K., Saidane H. Medium term system load forecasting with a dynamic artificial neural network model. Electr Power Syst Res 2006, 76(5):302-316.
    • (2006) Electr Power Syst Res , vol.76 , Issue.5 , pp. 302-316
    • Ghiassi, M.1    Zimbra, D.K.2    Saidane, H.3
  • 5
    • 0035048735 scopus 로고    scopus 로고
    • Univariate modeling and forecasting of energy consumption: the case of electricity in Lebanon
    • Saab S., Badr E., Nasr G. Univariate modeling and forecasting of energy consumption: the case of electricity in Lebanon. Energy 2001, 26(1):1-14.
    • (2001) Energy , vol.26 , Issue.1 , pp. 1-14
    • Saab, S.1    Badr, E.2    Nasr, G.3
  • 6
    • 0032205039 scopus 로고    scopus 로고
    • The impacts of temperature forecast uncertainty on Bayesian load forecasting
    • Douglas A.P., Breipohl A.M., Lee F.N., Adapa R. The impacts of temperature forecast uncertainty on Bayesian load forecasting. IEEE Trans Power Syst 1998, 13(4):1507-1513.
    • (1998) IEEE Trans Power Syst , vol.13 , Issue.4 , pp. 1507-1513
    • Douglas, A.P.1    Breipohl, A.M.2    Lee, F.N.3    Adapa, R.4
  • 7
    • 81155159719 scopus 로고    scopus 로고
    • Acomputational intelligence scheme for the prediction of the daily peak load
    • Nagi J., Yap K.S., Nagi F., Tiong S.K., Ahmed S.K. Acomputational intelligence scheme for the prediction of the daily peak load. Appl Soft Comput 2011, 11(8):4773-4788.
    • (2011) Appl Soft Comput , vol.11 , Issue.8 , pp. 4773-4788
    • Nagi, J.1    Yap, K.S.2    Nagi, F.3    Tiong, S.K.4    Ahmed, S.K.5
  • 8
    • 77956261937 scopus 로고    scopus 로고
    • Functional clustering and linear regression for peak load forecasting
    • Goia A., May C., Fusai G. Functional clustering and linear regression for peak load forecasting. Int J Forecast 2010, 26(4):700-711.
    • (2010) Int J Forecast , vol.26 , Issue.4 , pp. 700-711
    • Goia, A.1    May, C.2    Fusai, G.3
  • 9
    • 40949130866 scopus 로고    scopus 로고
    • Electricity demand for Sri Lanka: a time series analysis
    • Amarawickrama H.A., Hunt L.C. Electricity demand for Sri Lanka: a time series analysis. Energy 2008, 33(5):724-739.
    • (2008) Energy , vol.33 , Issue.5 , pp. 724-739
    • Amarawickrama, H.A.1    Hunt, L.C.2
  • 10
    • 67349202297 scopus 로고    scopus 로고
    • Short-term and midterm load forecasting using a bilevel optimization model
    • Mao H.I., Zeng X.J., Leng G., Zhai Y.J., Keane J.A. Short-term and midterm load forecasting using a bilevel optimization model. IEEE Trans Power Syst 2009, 24(2):1080-1090.
    • (2009) IEEE Trans Power Syst , vol.24 , Issue.2 , pp. 1080-1090
    • Mao, H.I.1    Zeng, X.J.2    Leng, G.3    Zhai, Y.J.4    Keane, J.A.5
  • 11
    • 32144445227 scopus 로고    scopus 로고
    • An optimized adaptive neural network for annual midterm energy forecasting
    • Tsekouras G.J., Hatziargyriou N.D., Dialynas E.N. An optimized adaptive neural network for annual midterm energy forecasting. IEEE Trans Power Syst 2006, 21(1):385-391.
    • (2006) IEEE Trans Power Syst , vol.21 , Issue.1 , pp. 385-391
    • Tsekouras, G.J.1    Hatziargyriou, N.D.2    Dialynas, E.N.3
  • 12
    • 84875050717 scopus 로고    scopus 로고
    • Energy load forecasting using empirical mode decomposition and support vector regression
    • Ghelardoni L., Ghio A., Anguita D. Energy load forecasting using empirical mode decomposition and support vector regression. IEEE Trans Smart Grid 2013, 4(1):549-556.
    • (2013) IEEE Trans Smart Grid , vol.4 , Issue.1 , pp. 549-556
    • Ghelardoni, L.1    Ghio, A.2    Anguita, D.3
  • 13
    • 9244240793 scopus 로고    scopus 로고
    • Load forecasting using support vector machines: a study on EUNITE competition 2001
    • Chen B.J., Chang M.W., Lin C.J. Load forecasting using support vector machines: a study on EUNITE competition 2001. IEEE Trans Power Syst 2004, 19(4):1821-1830.
    • (2004) IEEE Trans Power Syst , vol.19 , Issue.4 , pp. 1821-1830
    • Chen, B.J.1    Chang, M.W.2    Lin, C.J.3
  • 14
    • 67349154089 scopus 로고    scopus 로고
    • Electric load forecasting methods: tools for decision making
    • Hahn H., Meyer-Nieberg S., Pickl S. Electric load forecasting methods: tools for decision making. Eur J Oper Res 2009, 199(3):902-907.
    • (2009) Eur J Oper Res , vol.199 , Issue.3 , pp. 902-907
    • Hahn, H.1    Meyer-Nieberg, S.2    Pickl, S.3
  • 15
    • 84906788733 scopus 로고    scopus 로고
    • Asurvey on electric power demand forecasting: future trends in smart grids, microgrids and smart buildings
    • Hernandez L., Baladron C., Aguiar J.M., Carro B., Sanchez-Esguevillas A.J., Lloret J., et al. Asurvey on electric power demand forecasting: future trends in smart grids, microgrids and smart buildings. IEEE Commun Surv Tut 2014, 16(3):1460-1495.
    • (2014) IEEE Commun Surv Tut , vol.16 , Issue.3 , pp. 1460-1495
    • Hernandez, L.1    Baladron, C.2    Aguiar, J.M.3    Carro, B.4    Sanchez-Esguevillas, A.J.5    Lloret, J.6
  • 16
    • 79956346745 scopus 로고    scopus 로고
    • Holt's exponential smoothing and neural network models for forecasting interval-valued time series
    • Maia A.L.S., de Carvalho F.A.T. Holt's exponential smoothing and neural network models for forecasting interval-valued time series. Int J Forecast 2011, 27(3):740-759.
    • (2011) Int J Forecast , vol.27 , Issue.3 , pp. 740-759
    • Maia, A.L.S.1    de Carvalho, F.A.T.2
  • 17
    • 72249094153 scopus 로고    scopus 로고
    • Electric power demand forecasting using interval time series: a comparison between VAR and iMLP
    • García-Ascanio C., Maté C. Electric power demand forecasting using interval time series: a comparison between VAR and iMLP. Energy Policy 2010, 38(2):715-725.
    • (2010) Energy Policy , vol.38 , Issue.2 , pp. 715-725
    • García-Ascanio, C.1    Maté, C.2
  • 18
    • 84880339610 scopus 로고    scopus 로고
    • Arange arithmetic-based optimization model for power flow analysis under interval uncertainty
    • Vaccaro A., Cañizares C.A., Bhattacharya K. Arange arithmetic-based optimization model for power flow analysis under interval uncertainty. IEEE Trans Power Syst 2013, 28:1179-1186.
    • (2013) IEEE Trans Power Syst , vol.28 , pp. 1179-1186
    • Vaccaro, A.1    Cañizares, C.A.2    Bhattacharya, K.3
  • 20
    • 49249130139 scopus 로고    scopus 로고
    • The interval minimum load cutting problem in the process of transmission network expansion planning considering uncertainty in demand
    • Wu P., Cheng H., Xing J. The interval minimum load cutting problem in the process of transmission network expansion planning considering uncertainty in demand. IEEE Trans Power Syst 2008, 23:1497-1506.
    • (2008) IEEE Trans Power Syst , vol.23 , pp. 1497-1506
    • Wu, P.1    Cheng, H.2    Xing, J.3
  • 21
    • 78651439499 scopus 로고    scopus 로고
    • Different approaches to forecast interval time series: a comparison in finance
    • Arroyo J., Espínola R., Maté C. Different approaches to forecast interval time series: a comparison in finance. Comput Econ 2011, 37(2):169-191.
    • (2011) Comput Econ , vol.37 , Issue.2 , pp. 169-191
    • Arroyo, J.1    Espínola, R.2    Maté, C.3
  • 22
    • 33847009451 scopus 로고    scopus 로고
    • An empirical model of daily highs and lows
    • Cheung Y.-W. An empirical model of daily highs and lows. Int J Finance Econ 2007, 12(1):1-20.
    • (2007) Int J Finance Econ , vol.12 , Issue.1 , pp. 1-20
    • Cheung, Y.-W.1
  • 23
    • 61649115236 scopus 로고    scopus 로고
    • Ahigh-low model of daily stock price ranges
    • Cheung Y.-L., Cheung Y.-W., Wan A.T.K. Ahigh-low model of daily stock price ranges. JForecast 2009, 28(2):103-119.
    • (2009) JForecast , vol.28 , Issue.2 , pp. 103-119
    • Cheung, Y.-L.1    Cheung, Y.-W.2    Wan, A.T.K.3
  • 24
    • 84896905955 scopus 로고    scopus 로고
    • ACIX model with interval dummy variables and its application in forecasting interval-valued crude oil prices
    • Yang W., Han A., Cai K., Wang S. ACIX model with interval dummy variables and its application in forecasting interval-valued crude oil prices. Proc Comput Sci 2012, 9:1273-1282.
    • (2012) Proc Comput Sci , vol.9 , pp. 1273-1282
    • Yang, W.1    Han, A.2    Cai, K.3    Wang, S.4
  • 25
    • 78651457826 scopus 로고    scopus 로고
    • Exponential smoothing methods for interval time series. Conference exponential smoothing methods for interval time series
    • Arroyo J, Muñoz San Roque A, Maté C, Sarabia A. Exponential smoothing methods for interval time series. Conference exponential smoothing methods for interval time series. p. 231-240.
    • Arroyo, J.1    Muñoz San Roque, A.2    Maté, C.3    Sarabia, A.4
  • 26
    • 33847300536 scopus 로고    scopus 로고
    • IMLP: applying multi-layer perceptrons to interval-valued data
    • Roque A.M.S., Maté C., Arroyo J., Sarabia Á. iMLP: applying multi-layer perceptrons to interval-valued data. Neural Process Lett 2007, 25(2):157-169.
    • (2007) Neural Process Lett , vol.25 , Issue.2 , pp. 157-169
    • Roque, A.M.S.1    Maté, C.2    Arroyo, J.3    Sarabia, Á.4
  • 28
    • 0036466581 scopus 로고    scopus 로고
    • Short-term load forecasting by a neuro-fuzzy based approach
    • Liang R.-H., Cheng C.-C. Short-term load forecasting by a neuro-fuzzy based approach. Int J Electr Power Energy Syst 2002, 24:103-111.
    • (2002) Int J Electr Power Energy Syst , vol.24 , pp. 103-111
    • Liang, R.-H.1    Cheng, C.-C.2
  • 32
    • 84893774796 scopus 로고    scopus 로고
    • Multi-step-ahead time series prediction using multiple-output support vector regression
    • Bao Y., Xiong T., Hu Z. Multi-step-ahead time series prediction using multiple-output support vector regression. Neurocomputing 2014, 129:482-493.
    • (2014) Neurocomputing , vol.129 , pp. 482-493
    • Bao, Y.1    Xiong, T.2    Hu, Z.3
  • 33
    • 84888287824 scopus 로고    scopus 로고
    • Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
    • Xiong T., Bao Y., Hu Z. Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting. Knowledge Based Syst 2014, 55:87-100.
    • (2014) Knowledge Based Syst , vol.55 , pp. 87-100
    • Xiong, T.1    Bao, Y.2    Hu, Z.3
  • 34
    • 76649110223 scopus 로고    scopus 로고
    • Short-term load forecasting using fuzzy inductive reasoning and evolutionary algorithms
    • Hinojosa V.H., Hoese A. Short-term load forecasting using fuzzy inductive reasoning and evolutionary algorithms. IEEE Trans Power Syst 2010, 25(1):565-574.
    • (2010) IEEE Trans Power Syst , vol.25 , Issue.1 , pp. 565-574
    • Hinojosa, V.H.1    Hoese, A.2
  • 36
    • 84859610654 scopus 로고    scopus 로고
    • Short-term load forecasting using bayesian neural networks learned by hybrid Monte Carlo algorithm
    • Niu D-x, Shi H-f, Wu D.D. Short-term load forecasting using bayesian neural networks learned by hybrid Monte Carlo algorithm. Appl Soft Comput 2012, 12(6):1822-1827.
    • (2012) Appl Soft Comput , vol.12 , Issue.6 , pp. 1822-1827
    • Niu, D.-X.1    Shi, H.-F.2    Wu, D.D.3
  • 37
    • 84891616845 scopus 로고    scopus 로고
    • Hybrid PSO-SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank
    • Selakov A., Cvijetinović D., Milović L., Mellon S., Bekut D. Hybrid PSO-SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank. Appl Soft Comput 2014, 16(0):80-88.
    • (2014) Appl Soft Comput , vol.16 , Issue.0 , pp. 80-88
    • Selakov, A.1    Cvijetinović, D.2    Milović, L.3    Mellon, S.4    Bekut, D.5
  • 38
    • 84886088836 scopus 로고    scopus 로고
    • Astrategy for short-term load forecasting by support vector regression machines
    • Ceperic E., Ceperic V., Baric A. Astrategy for short-term load forecasting by support vector regression machines. IEEE Trans Power Syst 2013, 28(4):4356-4364.
    • (2013) IEEE Trans Power Syst , vol.28 , Issue.4 , pp. 4356-4364
    • Ceperic, E.1    Ceperic, V.2    Baric, A.3
  • 39
    • 84897619324 scopus 로고    scopus 로고
    • Agradient boosting approach to the Kaggle load forecasting competition
    • Ben Taieb S., Hyndman R.J. Agradient boosting approach to the Kaggle load forecasting competition. Int J Forecast 2014, 30(2):382-394.
    • (2014) Int J Forecast , vol.30 , Issue.2 , pp. 382-394
    • Ben Taieb, S.1    Hyndman, R.J.2
  • 43
    • 84855278833 scopus 로고    scopus 로고
    • Memetic algorithms and memetic computing optimization: a literature review
    • Neri F., Cotta C. Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol Comput 2012, 2:1-14.
    • (2012) Swarm Evol Comput , vol.2 , pp. 1-14
    • Neri, F.1    Cotta, C.2
  • 45
    • 77957863557 scopus 로고    scopus 로고
    • Firefly algorithms for multimodal optimization
    • Springer, Berlin, O. Watanabe, T. Zeugmann (Eds.)
    • Yang X.S. Firefly algorithms for multimodal optimization. Stochastic algorithms: foundations and applications, proceedings 2009, 169-178. Springer, Berlin. O. Watanabe, T. Zeugmann (Eds.).
    • (2009) Stochastic algorithms: foundations and applications, proceedings , pp. 169-178
    • Yang, X.S.1
  • 46
    • 84855993522 scopus 로고    scopus 로고
    • Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect
    • Yang X.S., Hosseini S.S.S., Gandomi A.H. Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl Soft Comput 2012, 12(3):1180-1186.
    • (2012) Appl Soft Comput , vol.12 , Issue.3 , pp. 1180-1186
    • Yang, X.S.1    Hosseini, S.S.S.2    Gandomi, A.H.3
  • 47
    • 84872858631 scopus 로고    scopus 로고
    • Optimal deviation based firefly algorithm tuned fuzzy design for multi-objective UCP
    • Chandrasekaran K., Simon S.P. Optimal deviation based firefly algorithm tuned fuzzy design for multi-objective UCP. IEEE Trans Power Syst 2013, 28(1):460-471.
    • (2013) IEEE Trans Power Syst , vol.28 , Issue.1 , pp. 460-471
    • Chandrasekaran, K.1    Simon, S.P.2
  • 49
    • 84859942718 scopus 로고    scopus 로고
    • Decomposition and statistical analysis for regional electricity demand forecasting
    • Wang C-h, Grozev G., Seo S. Decomposition and statistical analysis for regional electricity demand forecasting. Energy 2012, 41(1):313-325.
    • (2012) Energy , vol.41 , Issue.1 , pp. 313-325
    • Wang, C.-H.1    Grozev, G.2    Seo, S.3
  • 50
    • 84867745784 scopus 로고    scopus 로고
    • Ahybrid intelligent algorithm based short-term load forecasting approach
    • Hooshmand R.A., Amooshahi H., Parastegari M. Ahybrid intelligent algorithm based short-term load forecasting approach. Int J Electr Power Energy Syst 2013, 45(1):313-324.
    • (2013) Int J Electr Power Energy Syst , vol.45 , Issue.1 , pp. 313-324
    • Hooshmand, R.A.1    Amooshahi, H.2    Parastegari, M.3
  • 51
    • 84857642411 scopus 로고    scopus 로고
    • Areview and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
    • Ben Taieb S., Bontempi G., Atiya A.F., Sorjamaa A. Areview and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst Appl 2012, 39(8):7067-7083.
    • (2012) Expert Syst Appl , vol.39 , Issue.8 , pp. 7067-7083
    • Ben Taieb, S.1    Bontempi, G.2    Atiya, A.F.3    Sorjamaa, A.4
  • 52
    • 84883384262 scopus 로고    scopus 로고
    • Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices
    • Xiong T., Bao Y., Hu Z. Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices. Energy Econ 2013, 40:405-415.
    • (2013) Energy Econ , vol.40 , pp. 405-415
    • Xiong, T.1    Bao, Y.2    Hu, Z.3
  • 53
    • 0003710380 scopus 로고    scopus 로고
    • Department of Computer Science, National Taiwan University, Software available at:
    • Chang C.-C., Lin C.-J. LIBSVM: a library for support vector machines 2001, Department of Computer Science, National Taiwan University, Software available at:. http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm.
    • (2001) LIBSVM: a library for support vector machines
    • Chang, C.-C.1    Lin, C.-J.2
  • 54
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff Ae An introduction to variable and feature selection. JMach Learn Res 2003, 3:1157-1182.
    • (2003) JMach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 55
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. JMach Learn Res 2006, 7:1-30.
    • (2006) JMach Learn Res , vol.7 , pp. 1-30
    • Demšar, J.1
  • 56
    • 84923327840 scopus 로고    scopus 로고
    • An alternative way of presenting statistical test results when evaluating the performance of stochastic approaches
    • Weise T., Chiong R. An alternative way of presenting statistical test results when evaluating the performance of stochastic approaches. Neurocomputing 2015, 147:235-238.
    • (2015) Neurocomputing , vol.147 , pp. 235-238
    • Weise, T.1    Chiong, R.2
  • 57
    • 32144462264 scopus 로고    scopus 로고
    • Short-term load forecasting based on an adaptive hybrid method
    • Fan S., Chen L.N. Short-term load forecasting based on an adaptive hybrid method. IEEE Trans Power Syst 2006, 21(1):392-401.
    • (2006) IEEE Trans Power Syst , vol.21 , Issue.1 , pp. 392-401
    • Fan, S.1    Chen, L.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.