메뉴 건너뛰기




Volumn 63, Issue 10, 2015, Pages 2663-2677

Subspace learning and imputation for streaming big data matrices and tensors

Author keywords

Low rank; matrix and tensor completion; missing data; streaming analytics; subspace tracking

Indexed keywords

ALGORITHMS; CLUSTERING ALGORITHMS; DATA HANDLING; DATA MINING; MAGNETIC RESONANCE; MATRIX ALGEBRA; SOCIAL NETWORKING (ONLINE); TENSORS;

EID: 84928381098     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2015.2417491     Document Type: Article
Times cited : (184)

References (45)
  • 1
    • 84928394702 scopus 로고    scopus 로고
    • [Online]. Available: http://internet2.edu/observatory/archive/data-col-lections.html
  • 2
    • 79952446596 scopus 로고    scopus 로고
    • Scalable tensor factorizations for incomplete data
    • Mar.
    • E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mrup, "Scalable tensor factorizations for incomplete data," Chemometr. Intell. Lab. Syst., vol. 106, no. 1, pp. 41-56, Mar. 2011.
    • (2011) Chemometr. Intell. Lab. Syst. , vol.106 , Issue.1 , pp. 41-56
    • Acar, E.1    Dunlavy, D.M.2    Kolda, T.G.3    Mrup, M.4
  • 6
    • 84886522651 scopus 로고    scopus 로고
    • Rank regularization and Bayesian inference for tensor completion and extrapolation
    • Nov.
    • J. A. Bazerque, G. Mateos, and G. B. Giannakis, "Rank regularization and Bayesian inference for tensor completion and extrapolation," IEEE Trans. Signal Process., vol. 61, no. 22, pp. 5689-5703, Nov. 2013.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.22 , pp. 5689-5703
    • Bazerque, J.A.1    Mateos, G.2    Giannakis, G.B.3
  • 7
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Jan.
    • A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM J. Imag. Sci., vol. 2, pp. 183-202, Jan. 2009.
    • (2009) SIAM J. Imag. Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 8
    • 0036746455 scopus 로고    scopus 로고
    • On uniqueness in CANDE-COMP/PARAFAC
    • Sep.
    • J. M. F. T. Berge and N. D. Sidiropoulos, "On uniqueness in CANDE-COMP/PARAFAC," Psychometrika, vol. 67, no. 3, pp. 399-409, Sep. 2002.
    • (2002) Psychometrika , vol.67 , Issue.3 , pp. 399-409
    • Berge, J.M.F.T.1    Sidiropoulos, N.D.2
  • 9
    • 0003713964 scopus 로고    scopus 로고
    • 2nd ed. Belmont, MA, USA: Athena Scientific
    • D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA, USA: Athena Scientific, 1999.
    • (1999) Nonlinear Programming
    • Bertsekas, D.P.1
  • 10
    • 21644465788 scopus 로고    scopus 로고
    • Local minima and convergence in low-rank semidefinite programming
    • Dec.
    • S. Burer and R. D. Monteiro, "Local minima and convergence in low-rank semidefinite programming," Math. Programm., vol. 103, no. 3, pp. 427-444, Dec. 2005.
    • (2005) Math. Programm. , vol.103 , Issue.3 , pp. 427-444
    • Burer, S.1    Monteiro, R.D.2
  • 11
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • Apr.
    • E. J. Candes and B. Recht, "Exact matrix completion via convex optimization," Found. Comput. Math., vol. 9, no. 6, pp. 717-722, Apr. 2009.
    • (2009) Found. Comput. Math. , vol.9 , Issue.6 , pp. 717-722
    • Candes, E.J.1    Recht, B.2
  • 12
    • 77952741387 scopus 로고    scopus 로고
    • Matrix completion with noise
    • Jun.
    • E. Candes and Y. Plan, "Matrix completion with noise," Proceedings of the IEEE, vol. 98, pp. 925-936, Jun. 2009.
    • (2009) Proceedings of the IEEE , vol.98 , pp. 925-936
    • Candes, E.1    Plan, Y.2
  • 14
    • 84888116428 scopus 로고    scopus 로고
    • PETRELS: Parallel subspace estimation and tracking using recursive least squares from partial observations
    • Nov.
    • Y. Chi, Y. C. Eldar, and R. Calderbank, "PETRELS: Parallel subspace estimation and tracking using recursive least squares from partial observations," IEEE Trans. Signal Process., vol. 61, no. 23, pp. 5947-5959, Nov. 2013.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.23 , pp. 5947-5959
    • Chi, Y.1    Eldar, Y.C.2    Calderbank, R.3
  • 15
    • 79959203326 scopus 로고    scopus 로고
    • Subspace evolution and transfer (SET) for low-rank matrix completion
    • Jul.
    • W. Dai, O. Milenkovic, and E. Kerman, "Subspace evolution and transfer (SET) for low-rank matrix completion," IEEE Trans. Signal Process., vol. 59, no. 7, pp. 3120-3132, Jul. 2011.
    • (2011) IEEE Trans. Signal Process. , vol.59 , Issue.7 , pp. 3120-3132
    • Dai, W.1    Milenkovic, O.2    Kerman, E.3
  • 18
    • 33750372663 scopus 로고    scopus 로고
    • Cardiac MR imaging: State of the technology
    • Nov.
    • J. Finn, K. Nael, V. Deshpande, O. Ratib, and G. Laub, "Cardiac MR imaging: State of the technology," Radiology, vol. 241, no. 2, pp. 338-354, Nov. 2006.
    • (2006) Radiology , vol.241 , Issue.2 , pp. 338-354
    • Finn, J.1    Nael, K.2    Deshpande, V.3    Ratib, O.4    Laub, G.5
  • 19
    • 79551661156 scopus 로고    scopus 로고
    • Tensor completion and low-n-rank tensor recovery via convex optimization
    • Feb.
    • S. Gandy, B. Recht, and I. Yamada, "Tensor completion and low-n-rank tensor recovery via convex optimization," Inverse Problems, vol. 27, no. 2, pp. 1-19, Feb. 2011.
    • (2011) Inverse Problems , vol.27 , Issue.2 , pp. 1-19
    • Gandy, S.1    Recht, B.2    Yamada, I.3
  • 20
    • 84872532671 scopus 로고    scopus 로고
    • Prior rank, intensity and sparsity model (PRISM): A divide-and-conquer matrix decomposition model with low-rank coherence and sparse variation
    • San Diego, CA, USA, Aug.
    • H. Gao, "Prior rank, intensity and sparsity model (PRISM): A divide-and-conquer matrix decomposition model with low-rank coherence and sparse variation," presented at the SPIE Opt. Eng. Appl., San Diego, CA, USA, Aug. 2012.
    • (2012) Presented at the SPIE Opt. Eng. Appl.
    • Gao, H.1
  • 24
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," SIAM Rev., vol. 51, no. 3, pp. 455-500, 2009.
    • (2009) SIAM Rev. , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 25
    • 48749101457 scopus 로고
    • Three-way arrays: Rank and uniqueness of trilinear decompositions with application to arithmetic complexity and statistics
    • J. Kruskal, "Three-way arrays: Rank and uniqueness of trilinear decompositions with application to arithmetic complexity and statistics," Linear Algebra Appl., vol. 18, no. 2, pp. 95-138, 1977.
    • (1977) Linear Algebra Appl. , vol.18 , Issue.2 , pp. 95-138
    • Kruskal, J.1
  • 27
  • 28
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • Jan.
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro, "Online learning for matrix factorization and sparse coding," J. Mach. Learn. Res., vol. 11, pp. 19-60, Jan. 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 29
    • 84885088639 scopus 로고    scopus 로고
    • Decentralized sparsity regularized rank minimization: Applications and algorithms
    • Nov.
    • M. Mardani, G. Mateos, and G. B. Giannakis, "Decentralized sparsity regularized rank minimization: Applications and algorithms," IEEE Trans. Signal Process., vol. 61, no. 21, pp. 5374-5388, Nov. 2013.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.21 , pp. 5374-5388
    • Mardani, M.1    Mateos, G.2    Giannakis, G.B.3
  • 30
    • 84873824486 scopus 로고    scopus 로고
    • Dynamic anomalog-raphy: Tracking network anomalies via sparsity and low rank
    • Feb.
    • M. Mardani, G. Mateos, and G. B. Giannakis, "Dynamic anomalog-raphy: Tracking network anomalies via sparsity and low rank," IEEE J. Sel. Topics Signal Process., vol. 7, no. 11, pp. 50-66, Feb. 2013.
    • (2013) IEEE J. Sel. Topics Signal Process. , vol.7 , Issue.11 , pp. 50-66
    • Mardani, M.1    Mateos, G.2    Giannakis, G.B.3
  • 31
    • 34548480020 scopus 로고
    • A method of solving a convex programming problem with convergence rate
    • Y. Nesterov, "A method of solving a convex programming problem with convergence rate," Sov. Math. Doklady, vol. 27, pp. 372-376, 1983.
    • (1983) Sov. Math. Doklady , vol.27 , pp. 372-376
    • Nesterov, Y.1
  • 32
    • 66849113522 scopus 로고    scopus 로고
    • Adaptive algorithms to track the PARAFAC decomposition of a third-order tensor
    • Jun.
    • D. Nion and N. D. Sidiropoulos, "Adaptive algorithms to track the PARAFAC decomposition of a third-order tensor," IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2299-2310, Jun. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.6 , pp. 2299-2310
    • Nion, D.1    Sidiropoulos, N.D.2
  • 33
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
    • Aug.
    • B. Recht, M. Fazel, and P. A. Parrilo, "Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization," SIAM Rev., vol. 52, no. 3, pp. 471-501, Aug. 2010.
    • (2010) SIAM Rev. , vol.52 , Issue.3 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.A.3
  • 34
    • 79957617475 scopus 로고    scopus 로고
    • Tensor versus matrix completion: A comparison with application to spectral data
    • Jul.
    • M. Signoretto, R. V. Plas, B. D. Moor, and J. A. K. Suykens, "Tensor versus matrix completion: A comparison with application to spectral data," IEEE Signal Process. Lett., vol. 18, pp. 403-406, Jul. 2011.
    • (2011) IEEE Signal Process. Lett. , vol.18 , pp. 403-406
    • Signoretto, M.1    Plas, R.V.2    Moor, B.D.3    Suykens, J.A.K.4
  • 35
    • 84905259578 scopus 로고    scopus 로고
    • Online dictionary learning from big data using accelerated stochastic approximation algorithms
    • Florence, Italy, May
    • K. Slavakis and G. B. Giannakis, "Online dictionary learning from big data using accelerated stochastic approximation algorithms," presented at the Int. Conf. Acoust., Speech, Signal Process., Florence, Italy, May 2014.
    • (2014) Presented at the Int. Conf. Acoust., Speech, Signal Process.
    • Slavakis, K.1    Giannakis, G.B.2
  • 36
    • 85032752433 scopus 로고    scopus 로고
    • Modeling and optimization for Big Data analytics
    • Sep.
    • K. Slavakis, G. B. Giannakis, and G. Mateos, "Modeling and optimization for Big Data analytics," IEEE Signal Process. Mag., vol. 31, no. 5, pp. 18-31, Sep. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.5 , pp. 18-31
    • Slavakis, K.1    Giannakis, G.B.2    Mateos, G.3
  • 40
    • 24944527668 scopus 로고    scopus 로고
    • Rank, trace-norm and max-norm
    • Springer
    • N. Srebro and A. Shraibman, "Rank, trace-norm and max-norm," in Proc. Learn. Theory, 2005, pp. 545-560, Springer.
    • (2005) Proc. Learn. Theory , pp. 545-560
    • Srebro, N.1    Shraibman, A.2
  • 42
    • 0043166339 scopus 로고    scopus 로고
    • Anomaly detection in IP networks
    • Aug.
    • M. Thottan and C. Ji, "Anomaly detection in IP networks," IEEE Trans. Signal Process., vol. 51, no. 8, pp. 2191-2204, Aug. 2003.
    • (2003) IEEE Trans. Signal Process. , vol.51 , Issue.8 , pp. 2191-2204
    • Thottan, M.1    Ji, C.2
  • 44
    • 0029196852 scopus 로고
    • Projection approximation subspace tracking
    • Jan.
    • B. Yang, "Projection approximation subspace tracking," IEEE Trans. Signal. Process., vol. 43, pp. 95-107, Jan. 1995.
    • (1995) IEEE Trans. Signal. Process. , vol.43 , pp. 95-107
    • Yang, B.1
  • 45
    • 0023963505 scopus 로고
    • Adaptive eigensubspace algorithms for direction or frequency estimation and tracking
    • Feb.
    • J. F. Yang and M. Kaveh, "Adaptive eigensubspace algorithms for direction or frequency estimation and tracking," IEEE Trans. Acoust., Speech, Signal Process., vol. 36, no. 2, pp. 241-251, Feb. 1988.
    • (1988) IEEE Trans. Acoust., Speech, Signal Process. , vol.36 , Issue.2 , pp. 241-251
    • Yang, J.F.1    Kaveh, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.