-
1
-
-
0014841634
-
Multi-variate probit analysis
-
Ashford, J., Sowden, R., 1970. Multi-variate probit analysis. Biometrics 26, 535-546.
-
(1970)
Biometrics
, vol.26
, pp. 535-546
-
-
Ashford, J.1
Sowden, R.2
-
2
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
Beck, A., Teboulle, M., 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Img. Sci. 2, 183-202.
-
(2009)
SIAM J. Img. Sci.
, vol.2
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
4
-
-
29644434908
-
Incremental algorithms for hierarchical classification
-
Bianchi, N. C., Gentile, C., Zaniboni, L., 2006. Incremental algorithms for hierarchical classification. JMLR 7, 31-54.
-
(2006)
JMLR
, vol.7
, pp. 31-54
-
-
Bianchi, N.C.1
Gentile, C.2
Zaniboni, L.3
-
5
-
-
33846516584
-
-
Springer-Verlag New York, Inc., Secaucus, NJ, US
-
Bishop, C. M., 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
-
(2006)
Pattern Recognition and Machine Learning (Information Science and Statistics)
-
-
Bishop, C.M.1
-
8
-
-
68949141664
-
Combining instance-based learning and logistic regression for multilabel classification
-
Cheng, W., Hullermeier, E., 2009. Combining instance-based learning and logistic regression for multilabel classification. Machine Learning 76 (2-3), 211-225.
-
(2009)
Machine Learning
, vol.76
, Issue.2-3
, pp. 211-225
-
-
Cheng, W.1
Hullermeier, E.2
-
10
-
-
79955570175
-
On label dependence in multi-label classification
-
Dembczynnski, K., Waegeman, W., Cheng, W., Hullermeier, E., 2010b. On label dependence in multi-label classification. In: ICML 2010 Workshop on Learning from Multi-label data (MLD 10). pp. 5-13.
-
(2010)
ICML 2010 Workshop on Learning from Multi-label Data (MLD 10)
, pp. 5-13
-
-
Dembczynnski, K.1
Waegeman, W.2
Cheng, W.3
Hullermeier, E.4
-
13
-
-
77956528679
-
Multi-label prediction via compressed sensing
-
Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., Culotta, A. (Eds.)
-
Hsu, D., Kakade, S., Langford, J., Zhang, T., 2009. Multi-label prediction via compressed sensing. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., Culotta, A. (Eds.), Advances in Neural Information Processing Systems 22. pp. 772-780.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 772-780
-
-
Hsu, D.1
Kakade, S.2
Langford, J.3
Zhang, T.4
-
14
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
San Francisco, CA, USA
-
Lafferty, J. D., McCallum, A., Pereira, F. C. N., 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco, CA, USA, pp. 282-289.
-
(2001)
Proceedings of the Eighteenth International Conference on Machine Learning
, pp. 282-289
-
-
Lafferty, J.D.1
McCallum, A.2
Pereira, F.C.N.3
-
15
-
-
33750728256
-
-
Uncertainty in Artificial Intelligence
-
Murphy, K. P., Weiss, Y., Jordan, M. I., 1999. Loopy belief propagation for approximate inference: An empirical study. In: Uncertainty in Artificial Intelligence. pp. 467-475.
-
(1999)
Loopy Belief Propagation for Approximate Inference: An Empirical Study
, pp. 467-475
-
-
Murphy, K.P.1
Weiss, Y.2
Jordan, M.I.3
-
16
-
-
0003692801
-
-
Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, New York, US
-
Nemirovsky, A. S., Yudin, D. B., 1983. Problem Complexity and Method Efficiency in Optimization. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, New York, USA.
-
(1983)
Problem Complexity and Method Efficiency in Optimization
-
-
Nemirovsky, A.S.1
Yudin, D.B.2
-
17
-
-
85162000125
-
Reverse multi-label learning
-
Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R., Culotta, A. (Eds.)
-
Petterson, J., Caetano, T., 2010. Reverse multi-label learning. In: Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R., Culotta, A. (Eds.), Advances in Neural Information Processing Systems 23. pp. 1912-1920.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 1912-1920
-
-
Petterson, J.1
Caetano, T.2
-
18
-
-
77951455815
-
High-dimensional ising model selection using l 1-regularized logistic regression
-
Ravikumar, P., Wainwright, M. J., Lafferty, J. D., 2010. High-dimensional ising model selection using l 1-regularized logistic regression. Annals of Statistics 38, 1287-1319.
-
(2010)
Annals of Statistics
, vol.38
, pp. 1287-1319
-
-
Ravikumar, P.1
Wainwright, M.J.2
Lafferty, J.D.3
-
20
-
-
70349968175
-
-
ECML/PKDD
-
Read, J., Pfahringer, B., Holmes, G., Frank, E., 2009. Classifier chains for multi-label classification. In: ECML/PKDD. pp. 254-269.
-
(2009)
Classifier Chains for Multi-label Classification
, pp. 254-269
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
21
-
-
34547987363
-
Piecewise pseu-dolikelihood for efficient training of conditional random fields
-
Sutton, C. A., Mccallum, A., 2007. Piecewise pseu-dolikelihood for efficient training of conditional random fields. In: International Conference on Machine Learning. pp. 863-870.
-
(2007)
International Conference on Machine Learning
, pp. 863-870
-
-
Sutton, C.A.1
Mccallum, A.2
-
22
-
-
34748873053
-
Multi-label classification: An overview
-
Tsoumakas, G., Katakis, I., 2007. Multi-label classification: An overview. International Journal of Data Warehousing and Mining 3 (3), 1-13.
-
(2007)
International Journal of Data Warehousing and Mining
, vol.3
, Issue.3
, pp. 1-13
-
-
Tsoumakas, G.1
Katakis, I.2
-
23
-
-
81855221765
-
-
Data Mining and Knowledge Discovery Handbook
-
Tsoumakas, G., Katakis, I., Vlahavas, I. P., 2010. Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook. pp. 667-685.
-
(2010)
Mining Multi-label Data
, pp. 667-685
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.P.3
-
24
-
-
38049123909
-
Random k-labelsets: An ensemble method for multilabel classification
-
Warsaw, Poland
-
Tsoumakas, G., Vlahavas, I., Sep. 2007. Random k-Labelsets: An Ensemble Method for Multilabel Classification. In: Proceedings of the 18th European Conference on Machine Learning (ECML 2007). Warsaw, Poland, pp. 406-417.
-
(2007)
Proceedings of the 18th European Conference on Machine Learning (ECML 2007)
, pp. 406-417
-
-
Tsoumakas, G.1
Sep, V.I.2
-
25
-
-
33947681316
-
Ml-knn: Alazylearn-ing approach to multi-label learning
-
Zhang, M. L., Zhou, Z. H., 2007. Ml-knn: Alazylearn-ing approach to multi-label learning. Pattern Recognition 40 (7), 2038-2048.
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.L.1
Zhou, Z.H.2
|