메뉴 건너뛰기




Volumn , Issue , 2010, Pages 95-104

Automatic malware categorization using cluster ensemble

Author keywords

Cluster ensemble; Malware categorization; Signature

Indexed keywords

ANTI VIRUS; ANTI-MALWARE; CATEGORIZATION SYSTEMS; CLUSTER ENSEMBLES; CLUSTERING SOLUTIONS; CLUSTERING TECHNIQUES; CLUSTERINGS; COMPUTER SECURITY; DOMAIN KNOWLEDGE; FEATURE REPRESENTATION; HIER-ARCHICAL CLUSTERING; HIERARCHICAL CLUSTERING ALGORITHMS; K-MEDOIDS; MALWARE ANALYSIS; MALWARE DETECTION; MALWARES; SIGNATURE;

EID: 77956221197     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1835804.1835820     Document Type: Conference Paper
Times cited : (110)

References (28)
  • 1
    • 77956193730 scopus 로고    scopus 로고
    • Adaptive cluster ensemble selection
    • Javad Azimi and Xiaoli Fern. Adaptive cluster ensemble selection. In Proceedings of IJCAI, pages 992-997, 2009.
    • (2009) Proceedings of IJCAI , pp. 992-997
    • Azimi, J.1    Fern, X.2
  • 6
    • 34547965335 scopus 로고    scopus 로고
    • Adaptive dimension reduction using discriminant analysis and k-means clustering
    • Chris Ding and Tao Li. Adaptive dimension reduction using discriminant analysis and k-means clustering. In ICML, pages 521-528, 2007.
    • (2007) ICML , pp. 521-528
    • Ding, C.1    Li, T.2
  • 7
    • 38049018137 scopus 로고    scopus 로고
    • Solving cluster ensemble problems by bipartite graph partitioning
    • Xiaoli Zhang Fern and Carla E. Brodley. Solving cluster ensemble problems by bipartite graph partitioning. In ICML, page 36, 2004.
    • (2004) ICML , pp. 36
    • Fern, X.Z.1    Brodley, C.E.2
  • 9
    • 0001404416 scopus 로고
    • A new method of choosing the number of clusters for the fuzzy c-means method
    • Y. Fukuyama and M. Sugeno. A new method of choosing the number of clusters for the fuzzy c-means method. Proc. 5th Fuzzy Syst. Sym, pages 247-250, 1989.
    • (1989) Proc. 5th Fuzzy Syst. Sym , pp. 247-250
    • Fukuyama, Y.1    Sugeno, M.2
  • 11
    • 28444438828 scopus 로고    scopus 로고
    • Clustering aggregation
    • Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. Clustering aggregation. In ICDE, pages 341-352, 2005.
    • (2005) ICDE , pp. 341-352
    • Gionis, A.1    Mannila, H.2    Tsaparas, P.3
  • 13
    • 34347228671 scopus 로고    scopus 로고
    • An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
    • Liping Jing, Michael K. Ng, and Joshua Zhexue Huang. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans. on Knowl. and Data Eng., 19(8):1026-1041, 2007.
    • (2007) IEEE Trans. on Knowl. and Data Eng. , vol.19 , Issue.8 , pp. 1026-1041
    • Jing, L.1    Ng, M.K.2    Huang, J.Z.3
  • 15
    • 38149001240 scopus 로고    scopus 로고
    • Behavioral classification
    • May
    • Tony Lee and Jigar J. Mody. Behavioral classification. EICAR 2006, May 2006.
    • (2006) EICAR 2006
    • Lee, T.1    Mody, J.J.2
  • 16
    • 52649142093 scopus 로고    scopus 로고
    • Weighted consensus clustering
    • Tao Li and Chris Ding. Weighted Consensus Clustering. In SIAM Data Mining, 2008.
    • (2008) SIAM Data Mining
    • Li, T.1    Ding, C.2
  • 17
    • 49749129595 scopus 로고    scopus 로고
    • Solving consensus and semi-supervised clustering problems usi ng nonnegative matrix factorization
    • Tao Li, Chris Ding, and Michael I. Jordan. Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization. In ICDM, 2007.
    • (2007) ICDM
    • Li, T.1    Ding, C.2    Jordan, M.I.3
  • 19
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • Stefano Monti, Pablo Tamayo, Jill Mesirov, and Todd Gloub. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning Journal, 52(1-2):91-118, 2003.
    • (2003) Machine Learning Journal , vol.52 , Issue.1-2 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Gloub, T.4
  • 20
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. SIGKDD Explorations, 6:90-105, 2004.
    • (2004) SIGKDD Explorations , vol.6 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 23
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • March
    • Alexander Strehl and Joydeep Ghosh. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. JMLR, 3:583-617, March 2003.
    • (2003) JMLR , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 25
    • 30144442247 scopus 로고    scopus 로고
    • Clustering ensembles: Models of consensus and weak partitions
    • Alexander P. Topchy, Anil K. Jain, and William F. Punch. Clustering ensembles: Models of consensus and weak partitions. IEEE Trans. Pattern Anal. Mach. Intell., 27(12):1866-1881, 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.12 , pp. 1866-1881
    • Topchy, A.P.1    Jain, A.K.2    Punch, W.F.3
  • 26
    • 77956201661 scopus 로고    scopus 로고
    • Generalized cluster aggregation
    • Fei Wang, Xin Wang, and Tao Li. Generalized cluster aggregation. In Proceedings of IJCAI, pages 1279-1284, 2009.
    • (2009) Proceedings of IJCAI , pp. 1279-1284
    • Wang, F.1    Wang, X.2    Li, T.3
  • 28
    • 36849096063 scopus 로고    scopus 로고
    • IMDS: Intelligent malware detection system
    • Yanfang Ye, Dingding Wang, Tao Li, and Dongyi Ye. IMDS: Intelligent malware detection system. In SIGKDD, 2007.
    • (2007) SIGKDD
    • Ye, Y.1    Wang, D.2    Li, T.3    Ye, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.