-
1
-
-
80053050322
-
4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction
-
4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction Nat. Mater. 2011, 10, 780-786
-
(2011)
Nat. Mater.
, vol.10
, pp. 780-786
-
-
Liang, Y.1
Li, Y.2
Wang, H.3
Zhou, J.4
Wang, J.5
Regier, T.6
Dai, H.7
-
2
-
-
33847655153
-
Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism
-
Roche, I.; Chaiînet, E.; Chatenet, M.; Vondrák, J. Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism J. Phys. Chem. C 2007, 111, 1434-1443
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 1434-1443
-
-
Roche, I.1
Chaiînet, E.2
Chatenet, M.3
Vondrák, J.4
-
3
-
-
28144443225
-
Recent Development of Non-Platinum Catalysts for Oxygen Reduction Reaction
-
Wang, B. Recent Development of Non-Platinum Catalysts for Oxygen Reduction Reaction J. Power Sources 2005, 152, 1-15
-
(2005)
J. Power Sources
, vol.152
, pp. 1-15
-
-
Wang, B.1
-
4
-
-
84871961582
-
Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction
-
Deng, D.; Yu, L.; Chen, X.; Wang, G.; Jin, L.; Pan, X.; Deng, J.; Sun, G.; Bao, X. Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction Angew. Chem., Int. Ed. 2013, 52, 371-375
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 371-375
-
-
Deng, D.1
Yu, L.2
Chen, X.3
Wang, G.4
Jin, L.5
Pan, X.6
Deng, J.7
Sun, G.8
Bao, X.9
-
5
-
-
84882580139
-
Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction
-
Wu, G.; Zelenay, P. Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction Acc. Chem. Res. 2013, 46, 1878-1889
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 1878-1889
-
-
Wu, G.1
Zelenay, P.2
-
6
-
-
69949189987
-
Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films
-
Tang, L.; Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films Adv. Funct. Mater. 2009, 19, 2782-2789
-
(2009)
Adv. Funct. Mater.
, vol.19
, pp. 2782-2789
-
-
Tang, L.1
Wang, Y.2
Li, Y.3
Feng, H.4
Lu, J.5
Li, J.6
-
7
-
-
84880133779
-
Biomedical Applications of Graphene and Graphene Oxide
-
Chung, C.; Kim, Y. K.; Shin, D.; Ryoo, S. R.; Hong, B. H.; Min, D. H. Biomedical Applications of Graphene and Graphene Oxide Acc. Chem. Res. 2013, 46, 2211-2224
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 2211-2224
-
-
Chung, C.1
Kim, Y.K.2
Shin, D.3
Ryoo, S.R.4
Hong, B.H.5
Min, D.H.6
-
8
-
-
84901844077
-
Direct Exfoliation of Graphite to Graphene by a Facile Chemical Approach
-
Feng, H.; Wu, Y.; Li, J. Direct Exfoliation of Graphite to Graphene by a Facile Chemical Approach Small 2014, 10, 2233-2238
-
(2014)
Small
, vol.10
, pp. 2233-2238
-
-
Feng, H.1
Wu, Y.2
Li, J.3
-
9
-
-
77951727906
-
Nitrogen-Doped Graphene and its Application in Electrochemical Biosensing
-
Wang, Y.; Shao, Y.; Matson, D. W.; Li, J.; Lin, Y. Nitrogen-Doped Graphene and its Application in Electrochemical Biosensing ACS Nano 2010, 4, 1790-1798
-
(2010)
ACS Nano
, vol.4
, pp. 1790-1798
-
-
Wang, Y.1
Shao, Y.2
Matson, D.W.3
Li, J.4
Lin, Y.5
-
10
-
-
79957453783
-
Three-Dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition
-
Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. M. Three-Dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition Nat. Mater. 2011, 10, 424-428
-
(2011)
Nat. Mater.
, vol.10
, pp. 424-428
-
-
Chen, Z.1
Ren, W.2
Gao, L.3
Liu, B.4
Pei, S.5
Cheng, H.M.6
-
11
-
-
84859735929
-
4/Carbon Composite Electrocatalyst
-
4/Carbon Composite Electrocatalyst Angew. Chem., Int. Ed. 2012, 51, 3892-3896
-
(2012)
Angew. Chem., Int. Ed.
, vol.51
, pp. 3892-3896
-
-
Liang, J.1
Zheng, Y.2
Chen, J.3
Liu, J.4
Jurcakova, D.H.5
Jaroniec, M.6
Qiao, S.Z.7
-
12
-
-
84861909740
-
4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction
-
4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction J. Am. Chem. Soc. 2012, 134, 9082-9085.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 9082-9085
-
-
Wu, Z.S.1
Yang, S.2
Sun, Y.3
Parvez, K.4
Feng, X.5
Müllen, K.6
-
13
-
-
84859773740
-
High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network
-
Yavari, F.; Chen, Z.; Thomas, A. V.; Ren, W.; Cheng, H. M.; Koratkar, N. High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network Sci. Rep. 2011, 1, 1-5
-
(2011)
Sci. Rep.
, vol.1
, pp. 1-5
-
-
Yavari, F.1
Chen, Z.2
Thomas, A.V.3
Ren, W.4
Cheng, H.M.5
Koratkar, N.6
-
14
-
-
84887918905
-
Three-Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for High Performance Capacitive Deionization of Saline Water
-
Yin, H.; Zhao, S.; Wan, J.; Tang, H.; Chang, L.; He, L.; Zhao, H.; Gao, Y.; Tang, Z. Three-Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for High Performance Capacitive Deionization of Saline Water Adv. Mater. 2013, 25, 6270-6276
-
(2013)
Adv. Mater.
, vol.25
, pp. 6270-6276
-
-
Yin, H.1
Zhao, S.2
Wan, J.3
Tang, H.4
Chang, L.5
He, L.6
Zhao, H.7
Gao, Y.8
Tang, Z.9
-
15
-
-
84876583368
-
Synthesis and Characterization of Nitrogen-doped Graphene Hydrogels by Hydrothermal Route with Urea as Reducing-Doping Agents
-
Guo, H. L.; Su, P.; Kang, X.; Ning, S. K. Synthesis and Characterization of Nitrogen-doped Graphene Hydrogels by Hydrothermal Route with Urea as Reducing-Doping Agents J. Mater. Chem. A 2013, 1, 2248-2255
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 2248-2255
-
-
Guo, H.L.1
Su, P.2
Kang, X.3
Ning, S.K.4
-
16
-
-
79958784559
-
Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes
-
Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes Nano Lett. 2011, 11, 2472-2477
-
(2011)
Nano Lett
, vol.11
, pp. 2472-2477
-
-
Jeong, H.M.1
Lee, J.W.2
Shin, W.H.3
Choi, Y.J.4
Shin, H.J.5
Kang, J.K.6
Choi, J.W.7
-
17
-
-
84864970708
-
Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen-Reduction Reaction
-
Lin, Z.; Waller, G.; Liu, Y.; Liu, M.; Wong, C. P. Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen-Reduction Reaction Adv. Energy Mater. 2012, 2, 884-888
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 884-888
-
-
Lin, Z.1
Waller, G.2
Liu, Y.3
Liu, M.4
Wong, C.P.5
-
18
-
-
77955977655
-
Nitrogen-Doped Graphene and its Electrochemical Applications
-
Shao, Y.; Zhang, S.; Engelhard, M. H.; Li, G.; Shao, G.; Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. Nitrogen-Doped Graphene and its Electrochemical Applications J. Mater. Chem. 2010, 20, 7491-7496
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 7491-7496
-
-
Shao, Y.1
Zhang, S.2
Engelhard, M.H.3
Li, G.4
Shao, G.5
Wang, Y.6
Liu, J.7
Aksay, I.A.8
Lin, Y.9
-
19
-
-
84860736699
-
Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications
-
Wang, H.; Maiyalagan, T.; Wang, X. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications ACS Catal. 2012, 2, 781-794
-
(2012)
ACS Catal.
, vol.2
, pp. 781-794
-
-
Wang, H.1
Maiyalagan, T.2
Wang, X.3
-
20
-
-
84863337585
-
Wet Chemical Synthesis of Nitrogen-doped Graphene Towards Oxygen Reduction Electrocatalysts without High-Temperature Pyrolysis
-
Zhang, Y.; Fugane, K.; Mori, T.; Niu, L.; Ye, J. Wet Chemical Synthesis of Nitrogen-doped Graphene Towards Oxygen Reduction Electrocatalysts without High-Temperature Pyrolysis J. Mater. Chem. 2012, 22, 6575-6580
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 6575-6580
-
-
Zhang, Y.1
Fugane, K.2
Mori, T.3
Niu, L.4
Ye, J.5
-
21
-
-
84874622326
-
A Versatile, Ultralight, Nitrogen-Doped Graphene Framework
-
Zhao, Y.; Hu, C.; Hu, Y.; Cheng, H.; Shi, G.; Qu, L. A Versatile, Ultralight, Nitrogen-Doped Graphene Framework Angew. Chem. 2012, 124, 11533-11537
-
(2012)
Angew. Chem.
, vol.124
, pp. 11533-11537
-
-
Zhao, Y.1
Hu, C.2
Hu, Y.3
Cheng, H.4
Shi, G.5
Qu, L.6
-
22
-
-
77952907879
-
Solution Chemistry of Self-Assembled Graphene Nanohybrids for High-Performance Flexible Biosensors
-
Choi, B. G.; Park, H.; Park, T. J.; Yang, M. H.; Kim, J. S.; Jang, S. Y.; Heo, N. S.; Lee, S. Y.; Kong, J.; Hong, W. H. Solution Chemistry of Self-Assembled Graphene Nanohybrids for High-Performance Flexible Biosensors ACS Nano 2010, 4, 2910-2918
-
(2010)
ACS Nano
, vol.4
, pp. 2910-2918
-
-
Choi, B.G.1
Park, H.2
Park, T.J.3
Yang, M.H.4
Kim, J.S.5
Jang, S.Y.6
Heo, N.S.7
Lee, S.Y.8
Kong, J.9
Hong, W.H.10
-
23
-
-
84860588582
-
Facile Synthesis of Au-Nanoparticle/Polyoxometalate/Graphene Tricomponent Nanohybrids: an Enzyme-Free Electrochemical Biosensor for Hydrogen Peroxide
-
Liu, R.; Li, S.; Yu, X.; Zhang, G.; Zhang, S.; Yao, J.; Keita, B.; Nadjo, L.; Zhi, L. Facile Synthesis of Au-Nanoparticle/Polyoxometalate/Graphene Tricomponent Nanohybrids: an Enzyme-Free Electrochemical Biosensor for Hydrogen Peroxide Small 2012, 8, 1398-1406
-
(2012)
Small
, vol.8
, pp. 1398-1406
-
-
Liu, R.1
Li, S.2
Yu, X.3
Zhang, G.4
Zhang, S.5
Yao, J.6
Keita, B.7
Nadjo, L.8
Zhi, L.9
-
24
-
-
84904790563
-
Nanostructured Manganese Oxide Supported onto Particulate Glassy Carbon as an Active and Stable Oxygen Reduction Catalyst in Alkaline-Based Fuel Cells
-
Ng, J. W. D.; Gorlin, Y.; Nordlund, D.; Jaramillo, T. F. Nanostructured Manganese Oxide Supported onto Particulate Glassy Carbon as an Active and Stable Oxygen Reduction Catalyst in Alkaline-Based Fuel Cells J. Electrochem. Soc. 2014, 161, D3105-D3112
-
(2014)
J. Electrochem. Soc.
, vol.161
, pp. D3105-D3112
-
-
Ng, J.W.D.1
Gorlin, Y.2
Nordlund, D.3
Jaramillo, T.F.4
-
25
-
-
84868578861
-
Facile Synthesis of Manganese-Oxide-Containing Mesoporous Nitrogen-Doped Carbon for Efficient Oxygen Reduction
-
Tan, Y.; Xu, C.; Chen, G.; Fang, X.; Zheng, N.; Xie, Q. Facile Synthesis of Manganese-Oxide-Containing Mesoporous Nitrogen-Doped Carbon for Efficient Oxygen Reduction Adv. Funct. Mater. 2012, 22, 4584-4591
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 4584-4591
-
-
Tan, Y.1
Xu, C.2
Chen, G.3
Fang, X.4
Zheng, N.5
Xie, Q.6
-
26
-
-
84902117906
-
A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions
-
Zhou, X.; Qiao, J.; Yang, L.; Zhang, J. A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions. Adv. Energy Mater. 2014, 4.
-
(2014)
Adv. Energy Mater.
, vol.4
-
-
Zhou, X.1
Qiao, J.2
Yang, L.3
Zhang, J.4
-
27
-
-
84864358107
-
Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using PVP/Graphene Modified Electrodes
-
Jang, H. D.; Kim, S. K.; Chang, H.; Roh, K. M.; Choi, J. W.; Huang, J. Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using PVP/Graphene Modified Electrodes Talanta 2012, 97, 557-562
-
(2012)
Talanta
, vol.97
, pp. 557-562
-
-
Jang, H.D.1
Kim, S.K.2
Chang, H.3
Roh, K.M.4
Choi, J.W.5
Huang, J.6
-
28
-
-
77955529587
-
Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process
-
Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process ACS Nano 2010, 4, 4324-4330
-
(2010)
ACS Nano
, vol.4
, pp. 4324-4330
-
-
Xu, Y.1
Sheng, K.2
Li, C.3
Shi, G.4
-
29
-
-
84883213773
-
Covalently Interconnected Three-Dimensional Graphene Oxide Solids
-
Sudeep, P. M.; Narayanan, T. N.; Ganesan, A.; Shaijumon, M. M.; Yang, H.; Ozden, S.; Patra, P. K.; Pasquali, M.; Vajtai, R.; Ganguli, S. Covalently Interconnected Three-Dimensional Graphene Oxide Solids ACS Nano 2013, 7, 7034-7040
-
(2013)
ACS Nano
, vol.7
, pp. 7034-7040
-
-
Sudeep, P.M.1
Narayanan, T.N.2
Ganesan, A.3
Shaijumon, M.M.4
Yang, H.5
Ozden, S.6
Patra, P.K.7
Pasquali, M.8
Vajtai, R.9
Ganguli, S.10
|