메뉴 건너뛰기




Volumn 26, Issue 5, 2015, Pages 889-902

Self-organizing neural networks integrating domain knowledge and reinforcement learning

Author keywords

Adaptive resonance theory (ART); domain knowledge; reinforcement learning (RL); self organizing neural networks.

Indexed keywords

COMPLEX NETWORKS; LEARNING SYSTEMS; NEURAL NETWORKS; REAL TIME SYSTEMS;

EID: 84928007697     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2014.2327636     Document Type: Article
Times cited : (46)

References (32)
  • 1
    • 3142735069 scopus 로고    scopus 로고
    • How including prior knowledge as a subject variable may change outcomes of learning research
    • A. M. Shapiro, "How including prior knowledge as a subject variable may change outcomes of learning research," Amer. Educ. Res. J., vol. 40, no. 1, pp. 159-189, 2004.
    • (2004) Amer. Educ. Res. J , vol.40 , Issue.1 , pp. 159-189
    • Shapiro, A.M.1
  • 2
    • 0031099036 scopus 로고    scopus 로고
    • Cascade artmap: Integrating neural computation and symbolic knowledge processing
    • Mar
    • A.-H. Tan, "Cascade ARTMAP: Integrating neural computation and symbolic knowledge processing," IEEE Trans. Neural Netw., vol. 8, no. 2, pp. 237-250, Mar. 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.2 , pp. 237-250
    • Tan, A.-H.1
  • 3
    • 0001011612 scopus 로고
    • Learning from hints in neural networks
    • Y. S. Abu-Mostafa, "Learning from hints in neural networks," J. Complex., vol. 6, no. 2, pp. 192-198, 1990.
    • (1990) J. Complex , vol.6 , Issue.2 , pp. 192-198
    • Abu-Mostafa, Y.S.1
  • 4
    • 8844261754 scopus 로고
    • The utility of knowledge in inductive learning
    • M. Pazzani and D. Kibler, "The utility of knowledge in inductive learning," Mach. Learn., vol. 9, no. 1, pp. 57-94, 1992.
    • (1992) Mach. Learn , vol.9 , Issue.1 , pp. 57-94
    • Pazzani, M.1    Kibler, D.2
  • 5
    • 0001187959 scopus 로고
    • Explanation-based neural network learning for robot control
    • San Mateo, CA, USA: Morgan Kaufmann
    • T. M. Mitchell and S. Thrun, "Explanation-based neural network learning for robot control," in Advances in Neural Information Processing Systems 5. San Mateo, CA, USA: Morgan Kaufmann, 1993, pp. 287-294.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 287-294
    • Mitchell, T.M.1    Thrun, S.2
  • 6
    • 0003189388 scopus 로고
    • Interpretation of artificial neural networks: Mapping knowledge-based neural networks into rules
    • San Mateo, CA, USA: Morgan Kaufmann
    • G. G. Towell and J. W. Shavlik, "Interpretation of artificial neural networks: Mapping knowledge-based neural networks into rules," in Advances in Neural Information Processing Systems 4. San Mateo, CA, USA: Morgan Kaufmann, 1992, pp. 977-984.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 977-984
    • Towell, G.G.1    Shavlik, J.W.2
  • 7
    • 0027245159 scopus 로고
    • Knowledge-based connectionism for revising domain theories
    • Jan./Feb
    • L.-M. Fu, "Knowledge-based connectionism for revising domain theories," IEEE Trans. Syst., Man, Cybern., vol. 23, no. 1, pp. 173-182, Jan./Feb. 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern , vol.23 , Issue.1 , pp. 173-182
    • Fu, L.-M.1
  • 8
    • 0031607078 scopus 로고    scopus 로고
    • Embedding a priori knowledge in reinforcement learning
    • C. H. C. Ribeiro, "Embedding a priori knowledge in reinforcement learning," J. Intell. Robot. Syst., vol. 21, no. 1, pp. 51-71, 1998.
    • (1998) J. Intell. Robot. Syst , vol.21 , Issue.1 , pp. 51-71
    • Ribeiro, C.H.C.1
  • 9
    • 25844489212 scopus 로고    scopus 로고
    • Fynesse: An architecture for integrating prior knowledge in autonomously learning agents
    • R. Schoknecht, M. Spott, and M. Riedmiller, "Fynesse: An architecture for integrating prior knowledge in autonomously learning agents," Soft Comput., vol. 8, no. 6, pp. 397-408, 2004.
    • (2004) Soft Comput , vol.8 , Issue.6 , pp. 397-408
    • Schoknecht, R.1    Spott, M.2    Riedmiller, M.3
  • 10
    • 0032315210 scopus 로고    scopus 로고
    • Integrating symbolic knowledge in reinforcement learning
    • Oct
    • G. Hailu and G. Sommer, "Integrating symbolic knowledge in reinforcement learning," in Proc. Int. Conf. Syst., Man, Cybern., vol. 2. Oct. 1998, pp. 1491-1496.
    • (1998) Proc. Int. Conf. Syst., Man, Cybern , vol.2 , pp. 1491-1496
    • Hailu, G.1    Sommer, G.2
  • 11
    • 0034819986 scopus 로고    scopus 로고
    • Using background knowledge to speed reinforcement learning in physical agents
    • May
    • D. Shapiro, P. Langley, and R. Shachter, "Using background knowledge to speed reinforcement learning in physical agents," in Proc. Int. Conf. Auto. Agents, May 2001, pp. 254-261.
    • (2001) Proc. Int. Conf. Auto. Agents , pp. 254-261
    • Shapiro, D.1    Langley, P.2    Shachter, R.3
  • 12
    • 10944258804 scopus 로고    scopus 로고
    • Falcon: A fusion architecture for learning, cognition, and navigation
    • Budapest, Hungary Jul
    • A.-H. Tan, "FALCON: A fusion architecture for learning, cognition, and navigation," in Proc. IJCNN, Budapest, Hungary, Jul. 2004, pp. 3297-3302.
    • (2004) Proc. IJCNN , pp. 3297-3302
    • Tan, A.-H.1
  • 13
    • 40549121994 scopus 로고    scopus 로고
    • Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback
    • Feb
    • A.-H. Tan, N. Lu, and X. Dan, "Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback," IEEE Trans. Neural Netw., vol. 19, no. 2, pp. 230-244, Feb. 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.2 , pp. 230-244
    • Tan, A.-H.1    Lu, N.2    Dan, X.3
  • 14
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • G. A. Carpenter and S. Grossberg, "A massively parallel architecture for a self-organizing neural pattern recognition machine," Comput. Vis., Graph., Image Process., vol. 37, no. 1, pp. 54-115, 1987.
    • (1987) Comput. Vis., Graph., Image Process , vol.37 , Issue.1 , pp. 54-115
    • Carpenter, G.A.1    Grossberg, S.2
  • 15
    • 56349109535 scopus 로고    scopus 로고
    • Self-organizing neural models integrating rules and reinforcement learning
    • Jun
    • T.-H. Teng, Z.-M. Tan, and A.-H. Tan, "Self-organizing neural models integrating rules and reinforcement learning," in Proc. IEEE IJCNN, Jun. 2008, pp. 3770-3777.
    • (2008) Proc. IEEE IJCNN , pp. 3770-3777
    • Teng, T.-H.1    Tan, Z.-M.2    Tan, A.-H.3
  • 16
    • 62949085640 scopus 로고    scopus 로고
    • Cognitive agents integrating rules and reinforcement learning for context-aware decision support
    • Dec
    • T.-H. Teng and A.-H. Tan, "Cognitive agents integrating rules and reinforcement learning for context-aware decision support," in Proc. IAT, Dec. 2008, pp. 318-321.
    • (2008) Proc. IAT , pp. 318-321
    • Teng, T.-H.1    Tan, A.-H.2
  • 18
    • 79751536518 scopus 로고    scopus 로고
    • Continuous state/action reinforcement learning: A growing self-organizing map approach
    • H. Montazeri, S. Moradi, and R. Safabakhsh, "Continuous state/action reinforcement learning: A growing self-organizing map approach," Neurocomputing, vol. 74, no. 7, pp. 1069-1082, 2011.
    • (2011) Neurocomputing , vol.74 , Issue.7 , pp. 1069-1082
    • Montazeri, H.1    Moradi, S.2    Safabakhsh, R.3
  • 19
    • 0032203371 scopus 로고    scopus 로고
    • Incorporating prior information in machine learning by creating virtual examples
    • Nov
    • P. Niyogi, F. Girosi, and T. Poggio, "Incorporating prior information in machine learning by creating virtual examples," Proc. IEEE, vol. 86, no. 11, pp. 2196-2209, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2196-2209
    • Niyogi, P.1    Girosi, F.2    Poggio, T.3
  • 20
    • 51749088353 scopus 로고    scopus 로고
    • Agnostic learning vs. Prior knowledge challenge
    • Orlando, FL, USA Aug
    • I. Guyon, A. Saffari, G. Dror, and G. Cawley, "Agnostic learning vs. prior knowledge challenge," in Proc. IJCNN, Orlando, FL, USA, Aug. 2007, pp. 829-834.
    • (2007) Proc. IJCNN , pp. 829-834
    • Guyon, I.1    Saffari, A.2    Dror, G.3    Cawley, G.4
  • 21
    • 2342533144 scopus 로고    scopus 로고
    • Fusion of domain knowledge with data for structural learning in object oriented domains
    • Dec
    • H. Langseth and T. D. Nielsen, "Fusion of domain knowledge with data for structural learning in object oriented domains," J. Mach. Learn. Res., vol. 4, pp. 339-368, Dec. 2003.
    • (2003) J. Mach. Learn. Res , vol.4 , pp. 339-368
    • Langseth, H.1    Nielsen, T.D.2
  • 22
    • 0000475273 scopus 로고    scopus 로고
    • Prior knowledge and preferential structures in gradient descent learning algorithms
    • R. Mahony and R. Williamson, "Prior knowledge and preferential structures in gradient descent learning algorithms," J.Mach. Learn. Res., vol. 1, no. 4, pp. 311-355, 2001.
    • (2001) J.Mach. Learn. Res , vol.1 , Issue.4 , pp. 311-355
    • Mahony, R.1    Williamson, R.2
  • 23
    • 84879605150 scopus 로고    scopus 로고
    • An interactive approach for bayesian network learning using domain/expert knowledge
    • A. R. Masegosa and S. Moral, "An interactive approach for Bayesian network learning using domain/expert knowledge," Int. J. Approx. Reasoning, vol. 54, no. 8, pp. 1168-1181, 2013.
    • (2013) Int. J. Approx. Reasoning , vol.54 , Issue.8 , pp. 1168-1181
    • Masegosa, A.R.1    Moral, S.2
  • 24
    • 40649086418 scopus 로고    scopus 로고
    • Incorporating prior knowledge in support vector machines for classification: A review
    • F. Lauer and G. Bloch, "Incorporating prior knowledge in support vector machines for classification: A review," Neurocomputing, vol. 71, nos. 7-9, pp. 1578-1594, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1578-1594
    • Lauer, F.1    Bloch, G.2
  • 25
    • 67650471279 scopus 로고    scopus 로고
    • Incorporating functional knowledge in neural networks
    • Dec
    • C. Dugas, Y. Bengio, F. Belisle, C. Nadeau, and R. Garcia, "Incorporating functional knowledge in neural networks," J. Mach. Learn. Res., vol. 10, pp. 1239-1262, Dec. 2009.
    • (2009) J. Mach. Learn. Res , vol.10 , pp. 1239-1262
    • Dugas, C.1    Bengio, Y.2    Belisle, F.3    Nadeau, C.4    Garcia, R.5
  • 26
    • 34249833101 scopus 로고
    • Q-learning
    • C. J. C. H. Watkins and P. Dayan, "Q-learning," Mach. Learn., vol. 8, no. 3, pp. 279-292, 1992.
    • (1992) Mach. Learn , vol.8 , Issue.3 , pp. 279-292
    • Watkins, C.J.C.H.1    Dayan, P.2
  • 27
    • 84881465140 scopus 로고    scopus 로고
    • Self-regulating action exploration in reinforcement learning
    • Oct
    • T.-H. Teng, A.-H. Tan, and Y.-S. Tan, "Self-regulating action exploration in reinforcement learning," Proc. Comput. Sci., vol. 13, pp. 62-74, Oct. 2012.
    • (2012) Proc. Comput. Sci , vol.13 , pp. 62-74
    • Teng, T.-H.1    Tan, A.-H.2    Tan, Y.-S.3
  • 28
    • 56349167885 scopus 로고    scopus 로고
    • Direct code access in self-organizing neural networks for reinforcement learning
    • Jan
    • A.-H. Tan, "Direct code access in self-organizing neural networks for reinforcement learning," in Proc. IJCAI, Jan. 2007, pp. 1071-1076.
    • (2007) Proc. IJCAI , pp. 1071-1076
    • Tan, A.-H.1
  • 29
    • 84878434679 scopus 로고    scopus 로고
    • Knowledge-based exploration for reinforcement learning in self-organizing neural networks
    • T.-H. Teng and A.-H. Tan, "Knowledge-based exploration for reinforcement learning in self-organizing neural networks," in Proc. IAT, Dec. 2012, pp. 332-339.
    • (2012) Proc. IAT, Dec , pp. 332-339
    • Teng, T.-H.1    Tan, A.-H.2
  • 30
    • 84957701232 scopus 로고    scopus 로고
    • Statistical reasoning strategies in the pursuit and evasion domain
    • D. Floreano, J.-D. Nicoud, and F. Mondada, Eds. New York, NY, USA: Springer-Verlag
    • S. Ficici and J. Pollack, "Statistical reasoning strategies in the pursuit and evasion domain," in Advances in Artificial Life (Lecture Notes in Computer Science), vol. 1674, D. Floreano, J.-D. Nicoud, and F. Mondada, Eds. New York, NY, USA: Springer-Verlag, 1999, pp. 79-88.
    • (1999) Advances in Artificial Life (Lecture Notes in Computer Science) , vol.1674 , pp. 79-88
    • Ficici, S.1    Pollack, J.2
  • 32
    • 0001644568 scopus 로고
    • How many memory systems are there?"
    • E. Tulving, "How many memory systems are there?" Amer. Psychol., vol. 40, no. 4, pp. 385-398, 1985.
    • (1985) Amer. Psychol , vol.40 , Issue.4 , pp. 385-398
    • Tulving, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.