메뉴 건너뛰기




Volumn , Issue , 2014, Pages 600-603

Exploring functional brain dynamics via a Bayesian connectivity change point model

Author keywords

Change point detection; FMRI; Graph model

Indexed keywords

BAYESIAN NETWORKS; NEUROIMAGING;

EID: 84927926265     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/isbi.2014.6867942     Document Type: Conference Paper
Times cited : (14)

References (16)
  • 1
    • 34249786246 scopus 로고    scopus 로고
    • Brain states: Top-down influences in sensory processing
    • Gilbert, C.D., et al., Brain States: Top-Down Influences in Sensory Processing," Neuron, 54, pp. 677-696, 2007.
    • (2007) Neuron , vol.54 , pp. 677-696
    • Gilbert, C.D.1
  • 2
    • 78649641108 scopus 로고    scopus 로고
    • Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans
    • Majeed, W. et al., Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. NeuroImage, 2011.
    • (2011) NeuroImage
    • Majeed, W.1
  • 3
    • 33947731227 scopus 로고    scopus 로고
    • Modeling state-related fMRI activity using change-point theory
    • Lindquist M.A., et al., Modeling state-related fMRI activity using change-point theory, NeuroImage, 35, 1125-1141, 2007.
    • (2007) NeuroImage , vol.35 , pp. 1125-1141
    • Lindquist, M.A.1
  • 4
    • 75249093217 scopus 로고    scopus 로고
    • Time-frequency dynamics of resting-state brain connectivity measured with fMRI
    • Chang, C., et al., Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage, 2010.
    • (2010) NeuroImage
    • Chang, C.1
  • 5
    • 80052148144 scopus 로고    scopus 로고
    • Multi-subject search correctly identifies causal connections and most causal directions in the DCM models of the smith et Al. Simulation study
    • Ramsey J.D., et al., Multi-subject search correctly identifies causal connections and most causal directions in the DCM models of the Smith et al. simulation study, NeuroImage, 58, 838-48, 2011.
    • (2011) NeuroImage , vol.58 , pp. 838-848
    • Ramsey, J.D.1
  • 6
    • 84866879184 scopus 로고    scopus 로고
    • DICCCOL: Dense individualized and common connectivity-based cortical landmarks
    • Zhu, D., et al., DICCCOL: Dense Individualized and Common Connectivity-Based Cortical Landmarks. Cerebral Cortex, 2012.
    • (2012) Cerebral Cortex
    • Zhu, D.1
  • 7
    • 79551582027 scopus 로고    scopus 로고
    • Complex span tasks and hippocampal recruitment during working memory
    • Faraco, C.C., et al., Complex span tasks and hippocampal recruitment during working memory. NeuroImage, 2011.
    • (2011) NeuroImage
    • Faraco, C.C.1
  • 8
    • 0004012196 scopus 로고    scopus 로고
    • Second Edition, Chapman & Hall/CRC Texts in Statistical Science
    • Gelman A., et al., Bayesian Data Analysis, Second Edition, Chapman & Hall/CRC Texts in Statistical Science, 2003.
    • (2003) Bayesian Data Analysis
    • Gelman, A.1
  • 10
    • 78649717035 scopus 로고    scopus 로고
    • Network modeling methods for FMRI
    • Smith, S.M., et al., Network modeling methods for FMRI. NeuroImage, 54 (2), 875-891. 2011.
    • (2011) NeuroImage , vol.54 , Issue.2 , pp. 875-891
    • Smith, S.M.1
  • 11
    • 1642451910 scopus 로고    scopus 로고
    • Resting functional MRI with temporal clustering analysis for localization of epileptic activity without EEG
    • Morgan, V.L., et al., 2004. Resting functional MRI with temporal clustering analysis for localization of epileptic activity without EEG. NeuroImage 21, 473-481.
    • (2004) NeuroImage , vol.21 , pp. 473-481
    • Morgan, V.L.1
  • 12
    • 84880572953 scopus 로고    scopus 로고
    • Detecting brain state changes via fiber-centered functional connectivity analysis
    • in press
    • Li X., et al., Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis, in press, Neuroinformatics, 2013.
    • (2013) Neuroinformatics
    • Li, X.1
  • 14
    • 84861338060 scopus 로고    scopus 로고
    • Dynamic connectivity regression: Determining state-related changes in brain connectivity
    • Cribben, I., et al., Dynamic connectivity regression: Determining state-related changes in brain connectivity. NeuroImage, 61, pp. 907-920, 2012.
    • (2012) NeuroImage , vol.61 , pp. 907-920
    • Cribben, I.1
  • 15
    • 84882271485 scopus 로고    scopus 로고
    • Characterization of task-free and task-performance brain states via functional connectome patterns
    • in press
    • Zhang X., et al., Characterization of Task-free and Task-performance Brain States via Functional Connectome Patterns, in press, Medical Image Analysis, 2013.
    • (2013) Medical Image Analysis
    • Zhang, X.1
  • 16
    • 84877130690 scopus 로고    scopus 로고
    • Tracking whole-brain connectivity dynamics in the resting state
    • Allen, E. A., et al., Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 2012.
    • (2012) Cerebral Cortex
    • Allen, E.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.