-
1
-
-
84927910273
-
-
Mineral Commodity Summaries 2012. Reston, VA: U.S. Geological Survey McNutt MK, ed
-
U.S. Geological Survey. Soda ash. In: McNutt MK, ed. Mineral Commodity Summaries 2012. Reston, VA: U.S. Geological Survey; 2012, 148.
-
(2012)
Soda ash
, pp. 148
-
-
-
3
-
-
84865519433
-
Rechargeable batteries: challenges old and new
-
Goodenough JB. Rechargeable batteries: challenges old and new. J Solid State Electrochem 2012, 16:2019-2029.
-
(2012)
J Solid State Electrochem
, vol.16
, pp. 2019-2029
-
-
Goodenough, J.B.1
-
4
-
-
84927912841
-
-
Battery having a molten alkali metal anode and molten sulfur cathode
-
Kummer JT, Weber N. Battery having a molten alkali metal anode and molten sulfur cathode. US Patent 3413150, 1968.
-
(1968)
-
-
Kummer, J.T.1
Weber, N.2
-
5
-
-
84863124481
-
Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte
-
Sun Q, Yang Y, Fu ZW. Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte. Electrochem Commun 2012, 16:22-25.
-
(2012)
Electrochem Commun
, vol.16
, pp. 22-25
-
-
Sun, Q.1
Yang, Y.2
Fu, Z.W.3
-
6
-
-
0035976493
-
The sodium/nickel chloride (ZEBRA) battery
-
Sudworth JL. The sodium/nickel chloride (ZEBRA) battery. J Power Sources 2001, 100:149-163.
-
(2001)
J Power Sources
, vol.100
, pp. 149-163
-
-
Sudworth, J.L.1
-
8
-
-
84882594139
-
Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
-
Pan H, Hu YS, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 2013, 6:2338-2360.
-
(2013)
Energy Environ Sci
, vol.6
, pp. 2338-2360
-
-
Pan, H.1
Hu, Y.S.2
Chen, L.3
-
9
-
-
84944648082
-
Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
-
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr 1976, A32:751-767.
-
(1976)
Acta Crystallogr
, vol.A32
, pp. 751-767
-
-
Shannon, R.D.1
-
10
-
-
85069327812
-
Sodium ion batteries. Grand challenges in energy storage
-
Slater MD, Kim D, Lee E, Johnson CS. Sodium ion batteries. Grand challenges in energy storage. Adv Funct Mater 2013, 23:917-1089.
-
(2013)
Adv Funct Mater
, vol.23
, pp. 917-1089
-
-
Slater, M.D.1
Kim, D.2
Lee, E.3
Johnson, C.S.4
-
16
-
-
84865203248
-
A new high performing cathode material for lithium rechargeable batteries
-
Nithya C, Thirunakaran R, Sivashanmugam A, Gopukumar S. A new high performing cathode material for lithium rechargeable batteries. ACS Appl Mater Interfaces 2012, 4:4040-4046.
-
(2012)
ACS Appl Mater Interfaces
, vol.4
, pp. 4040-4046
-
-
Nithya, C.1
Thirunakaran, R.2
Sivashanmugam, A.3
Gopukumar, S.4
-
17
-
-
84868142057
-
Solar powered ne lithium ion battery incorporating high performing electrode materials
-
Gopukumar S, Nithya C, Maheswari PH, Ravikumar R, Thirunakaran R, Sivashanmugam A, Dhawan SK, Mathur RB. Solar powered ne lithium ion battery incorporating high performing electrode materials. RSC Adv 2012, 2:11574-11577.
-
(2012)
RSC Adv
, vol.2
, pp. 11574-11577
-
-
Gopukumar, S.1
Nithya, C.2
Maheswari, P.H.3
Ravikumar, R.4
Thirunakaran, R.5
Sivashanmugam, A.6
Dhawan, S.K.7
Mathur, R.B.8
-
18
-
-
84878282979
-
Reduced graphite oxide/Sn nano composite: a superior anode for lithium ion batteries
-
Nithya C, Gopukumar S. Reduced graphite oxide/Sn nano composite: a superior anode for lithium ion batteries. ChemSusChem 2013, 6:898-904.
-
(2013)
ChemSusChem
, vol.6
, pp. 898-904
-
-
Nithya, C.1
Gopukumar, S.2
-
19
-
-
84874043538
-
2 composite anode material for lithium ion battery
-
2 composite anode material for lithium ion battery. Phys Chem Chem Phys 2013, 15:3712-3717.
-
(2013)
Phys Chem Chem Phys
, vol.15
, pp. 3712-3717
-
-
Ravikumar, R.1
Gopukumar, S.2
-
20
-
-
84886646502
-
4 with an olivine- and maricite-type structure
-
4 with an olivine- and maricite-type structure. Crystal Eng Commun 2013, 15:9080-9089.
-
(2013)
Crystal Eng Commun
, vol.15
, pp. 9080-9089
-
-
Koleva, V.1
Boyadzhieva, T.2
Zhecheva, E.3
Nihtianova, D.4
Simova, S.5
Tyuliev, G.6
Stoyanova, R.7
-
21
-
-
0010385139
-
Synthesis and crystal structure of maricite and sodium Iron(III) hydroxyphosphate
-
Bridson JN, Quinlan SE, Tremaine PR. Synthesis and crystal structure of maricite and sodium Iron(III) hydroxyphosphate. Chem Mater 1998, 10:763-768.
-
(1998)
Chem Mater
, vol.10
, pp. 763-768
-
-
Bridson, J.N.1
Quinlan, S.E.2
Tremaine, P.R.3
-
22
-
-
84884158265
-
Conversion reactions for sodium-ion batteries
-
Klein F, Jache B, Bhide A, Adelhelm P. Conversion reactions for sodium-ion batteries. Phys Chem Chem Phys 2013, 15:15876-15887.
-
(2013)
Phys Chem Chem Phys
, vol.15
, pp. 15876-15887
-
-
Klein, F.1
Jache, B.2
Bhide, A.3
Adelhelm, P.4
-
24
-
-
0033751756
-
High capacity anode materials for rechargeable sodium-ion batteries
-
Stevens DA, Dahn JR. High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 2000, 147:1271-1273.
-
(2000)
J Electrochem Soc
, vol.147
, pp. 1271-1273
-
-
Stevens, D.A.1
Dahn, J.R.2
-
26
-
-
0000209922
-
A lamellar compound of sodium and graphite
-
Asher RC. A lamellar compound of sodium and graphite. J Inorg Nucl Chem 1959, 10:238-249.
-
(1959)
J Inorg Nucl Chem
, vol.10
, pp. 238-249
-
-
Asher, R.C.1
-
27
-
-
0024068597
-
Electrochemical intercalation of sodium in graphite
-
Ge P, Fouletier M. Electrochemical intercalation of sodium in graphite. Solid State Ion 1988, 30:1172-1175.
-
(1988)
Solid State Ion
, vol.30
, pp. 1172-1175
-
-
Ge, P.1
Fouletier, M.2
-
28
-
-
0027710224
-
Electrochemical insertion of sodium into carbon
-
Doeff MM, Ma YP, Visco SJ, Dejonghe LC. Electrochemical insertion of sodium into carbon. J Electrochem Soc 1993, 140:L169-L170.
-
(1993)
J Electrochem Soc
, vol.140
, pp. L169-L170
-
-
Doeff, M.M.1
Ma, Y.P.2
Visco, S.J.3
Dejonghe, L.C.4
-
29
-
-
0009800208
-
The mechanisms of lithium and sodium insertion in carbon materials
-
Stevens DA, Dahn JR. The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 2001, 148:A803-A811.
-
(2001)
J Electrochem Soc
, vol.148
, pp. A803-A811
-
-
Stevens, D.A.1
Dahn, J.R.2
-
30
-
-
84886096318
-
Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries
-
Zhao J, Zhao L, Chihara K, Okada S, Yamaki J, Matsumoto S, Kuze S, Nakane K. Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries. J Power Sources 2013, 244:752-757.
-
(2013)
J Power Sources
, vol.244
, pp. 752-757
-
-
Zhao, J.1
Zhao, L.2
Chihara, K.3
Okada, S.4
Yamaki, J.5
Matsumoto, S.6
Kuze, S.7
Nakane, K.8
-
31
-
-
80054830129
-
Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-Ion batteries
-
Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-Ion batteries. Adv Funct Mater 2011, 21:3859-3867.
-
(2011)
Adv Funct Mater
, vol.21
, pp. 3859-3867
-
-
Komaba, S.1
Murata, W.2
Ishikawa, T.3
Yabuuchi, N.4
Ozeki, T.5
Nakayama, T.6
Ogata, A.7
Gotoh, K.8
Fujiwara, K.9
-
32
-
-
0034753822
-
Carbon black: a promising electrode material for sodium ion batteries
-
Alcantara R, Jimenez-Mateos JM, Lavela P, Tirado JL. Carbon black: a promising electrode material for sodium ion batteries. Electrochem Commun 2001, 3:639-642.
-
(2001)
Electrochem Commun
, vol.3
, pp. 639-642
-
-
Alcantara, R.1
Jimenez-Mateos, J.M.2
Lavela, P.3
Tirado, J.L.4
-
33
-
-
84881581207
-
Surface-driven sodium ion storage in nano cellular carbon foams
-
Shao Y, Xiao J, Wang W, Engelhard M, Chen X, Nie Z, Gu M, Saraf LV, Exarhos G, Zhang JG, et al. Surface-driven sodium ion storage in nano cellular carbon foams. Nano Lett 2013, 13:3909-3914.
-
(2013)
Nano Lett
, vol.13
, pp. 3909-3914
-
-
Shao, Y.1
Xiao, J.2
Wang, W.3
Engelhard, M.4
Chen, X.5
Nie, Z.6
Gu, M.7
Saraf, L.V.8
Exarhos, G.9
Zhang, J.G.10
-
34
-
-
84957953507
-
Highly disordered carbon as a superior anode material for room-temperature sodium ion batteries
-
Zhou X, Guo YG. Highly disordered carbon as a superior anode material for room-temperature sodium ion batteries. ChemElectroChem 2013, 1:83-86.
-
(2013)
ChemElectroChem
, vol.1
, pp. 83-86
-
-
Zhou, X.1
Guo, Y.G.2
-
35
-
-
84863832016
-
Sodium ion insertion in hollow carbon nanowires for battery applications
-
Cao Y, Xiao L, Shshko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Yang Z, Liu J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 2012, 12:3783-3787.
-
(2012)
Nano Lett
, vol.12
, pp. 3783-3787
-
-
Cao, Y.1
Xiao, L.2
Shshko, M.L.3
Wang, W.4
Schwenzer, B.5
Xiao, J.6
Nie, Z.7
Yang, Z.8
Liu, J.9
-
36
-
-
84885811735
-
Electrochemical insertion of sodium ion into nanocarbon materials for sodium ion batteries
-
Matsushita T, Ishii Y, Kawasaki S. Electrochemical insertion of sodium ion into nanocarbon materials for sodium ion batteries. ECS Trans 2013, 50:1-6.
-
(2013)
ECS Trans
, vol.50
, pp. 1-6
-
-
Matsushita, T.1
Ishii, Y.2
Kawasaki, S.3
-
37
-
-
84867315537
-
Hollow carbon nanospheres with superior rate capability for sodium based batteries
-
Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J. Hollow carbon nanospheres with superior rate capability for sodium based batteries. Adv Energy Mater 2012, 2:873-877.
-
(2012)
Adv Energy Mater
, vol.2
, pp. 873-877
-
-
Tang, K.1
Fu, L.2
White, R.J.3
Yu, L.4
Titirici, M.M.5
Antonietti, M.6
Maier, J.7
-
38
-
-
84870320062
-
High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte
-
Ponrouch A, Goni AR, Rosa Palacin M. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 2013, 27:85-88.
-
(2013)
Electrochem Commun
, vol.27
, pp. 85-88
-
-
Ponrouch, A.1
Goni, A.R.2
Rosa Palacin, M.3
-
39
-
-
84873406655
-
Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium ion storage with excellent performance
-
Wang Z, Qie L, Yuan L, Zhang W, Hu X, Huang Y. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium ion storage with excellent performance. Carbon 2013, 55:328-334.
-
(2013)
Carbon
, vol.55
, pp. 328-334
-
-
Wang, Z.1
Qie, L.2
Yuan, L.3
Zhang, W.4
Hu, X.5
Huang, Y.6
-
40
-
-
79960898109
-
Challenges for Na-ion negative electrodes
-
Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc 2011, 158:A1011-A1014.
-
(2011)
J Electrochem Soc
, vol.158
, pp. A1011-A1014
-
-
Chevrier, V.L.1
Ceder, G.2
-
41
-
-
84871591420
-
Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism
-
Darwhiche A, Marino C, Sougrati T, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc 2012, 134:20805-20811.
-
(2012)
J Am Chem Soc
, vol.134
, pp. 20805-20811
-
-
Darwhiche, A.1
Marino, C.2
Sougrati, T.3
Fraisse, B.4
Stievano, L.5
Monconduit, L.6
-
42
-
-
84862527593
-
High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries
-
Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 2012, 48:7070-7072.
-
(2012)
Chem Commun
, vol.48
, pp. 7070-7072
-
-
Qian, J.1
Chen, Y.2
Wu, L.3
Cao, Y.4
Ai, X.5
Yang, H.6
-
43
-
-
84880816754
-
Electrospun Sb/C fibers for a stable and fast sodium ion battery anode
-
Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C. Electrospun Sb/C fibers for a stable and fast sodium ion battery anode. ACS Nano 2013, 7:6378-6386.
-
(2013)
ACS Nano
, vol.7
, pp. 6378-6386
-
-
Zhu, Y.1
Han, X.2
Xu, Y.3
Liu, Y.4
Zheng, S.5
Xu, K.6
Hu, L.7
Wang, C.8
-
44
-
-
84869868027
-
Tin and graphite based nanocomposites: potential anode for sodium ion batteries
-
Datta MK, Epur R, Saha P, Kadakia K, Park SK, Kumta PN. Tin and graphite based nanocomposites: potential anode for sodium ion batteries. J Power Sources 2013, 225:316-322.
-
(2013)
J Power Sources
, vol.225
, pp. 316-322
-
-
Datta, M.K.1
Epur, R.2
Saha, P.3
Kadakia, K.4
Park, S.K.5
Kumta, P.N.6
-
45
-
-
84880166567
-
Tin anode for sodium ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir
-
Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L. Tin anode for sodium ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 2013, 13:3093-3100.
-
(2013)
Nano Lett
, vol.13
, pp. 3093-3100
-
-
Zhu, H.1
Jia, Z.2
Chen, Y.3
Weadock, N.4
Wan, J.5
Vaaland, O.6
Han, X.7
Li, T.8
Hu, L.9
-
46
-
-
84874069759
-
Electrochemical performance of porous carbon/tin composite anodes for sodium ion and lithium ion batteries
-
Xu Y, Zhu Y, Liu Y, Wang C. Electrochemical performance of porous carbon/tin composite anodes for sodium ion and lithium ion batteries. Adv Energy Mater 2013, 3:128-133.
-
(2013)
Adv Energy Mater
, vol.3
, pp. 128-133
-
-
Xu, Y.1
Zhu, Y.2
Liu, Y.3
Wang, C.4
-
47
-
-
84884549870
-
Nanocolumnar germanium thin films as a high rate sodium ion battery anode material
-
Abel PR, Lin YM, Souza T, Chou CY, Gupta A, Goodenough JB, Hwang GS, Heller A, Mullins CB. Nanocolumnar germanium thin films as a high rate sodium ion battery anode material. J Phys Chem C 2013, 117:18885-18890.
-
(2013)
J Phys Chem C
, vol.117
, pp. 18885-18890
-
-
Abel, P.R.1
Lin, Y.M.2
Souza, T.3
Chou, C.Y.4
Gupta, A.5
Goodenough, J.B.6
Hwang, G.S.7
Heller, A.8
Mullins, C.B.9
-
48
-
-
84883261226
-
Germanium as negative electrode material for sodium ion batteries
-
Baggetto L, Keum JK, Browning JF, Veith GM. Germanium as negative electrode material for sodium ion batteries. Electrochem Commun 2013, 34:41-44.
-
(2013)
Electrochem Commun
, vol.34
, pp. 41-44
-
-
Baggetto, L.1
Keum, J.K.2
Browning, J.F.3
Veith, G.M.4
-
49
-
-
84878877019
-
An amorphous red phosphorous/carbon composite as a promising anode material for sodium ion batteries
-
Kim Y, Park Y, Choi A, Choi NS, Kim J, Lee J, Ryu JH, Oh SM, Lee KT. An amorphous red phosphorous/carbon composite as a promising anode material for sodium ion batteries. Adv Mater 2013, 25:3045-3049.
-
(2013)
Adv Mater
, vol.25
, pp. 3045-3049
-
-
Kim, Y.1
Park, Y.2
Choi, A.3
Choi, N.S.4
Kim, J.5
Lee, J.6
Ryu, J.H.7
Oh, S.M.8
Lee, K.T.9
-
50
-
-
84883467564
-
High capacity and rate capability of amorphous phosphorous for sodium ion batteries
-
Qian J, Wu X, Cao Y, Ai X, Yang H. High capacity and rate capability of amorphous phosphorous for sodium ion batteries. Angew Chem 2013, 125:4731-4734.
-
(2013)
Angew Chem
, vol.125
, pp. 4731-4734
-
-
Qian, J.1
Wu, X.2
Cao, Y.3
Ai, X.4
Yang, H.5
-
51
-
-
84884954636
-
Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity
-
Luo C, Xu Y, Zhu Y, Liu Y, Zheng S, Liu Y, Langrock A, Wang C. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 2013, 7:8003-8010.
-
(2013)
ACS Nano
, vol.7
, pp. 8003-8010
-
-
Luo, C.1
Xu, Y.2
Zhu, Y.3
Liu, Y.4
Zheng, S.5
Liu, Y.6
Langrock, A.7
Wang, C.8
-
52
-
-
77955508076
-
Key challenges in future Li-battery research
-
Tarascon JM. Key challenges in future Li-battery research. Philos Trans R Soc A 2010, 368:3227-3241.
-
(2010)
Philos Trans R Soc A
, vol.368
, pp. 3227-3241
-
-
Tarascon, J.M.1
-
53
-
-
84944648082
-
Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides
-
Shannon RD. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A: Found Crystallogr 1976, 32:751-767.
-
(1976)
Acta Crystallogr Sect A: Found Crystallogr
, vol.32
, pp. 751-767
-
-
Shannon, R.D.1
-
55
-
-
84880556085
-
2 (B) nanotubes for sodium ion batteries
-
2 (B) nanotubes for sodium ion batteries. RSC Adv 2013, 3:12593-12597.
-
(2013)
RSC Adv
, vol.3
, pp. 12593-12597
-
-
Huang, J.P.1
Yuan, D.D.2
Zhang, H.Z.3
Cao, Y.L.4
Li, G.R.5
Yang, H.X.6
Gao, X.P.7
-
56
-
-
84866687358
-
2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries
-
2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J Power Sources 2013, 222:461-466.
-
(2013)
J Power Sources
, vol.222
, pp. 461-466
-
-
Bi, Z.1
Paranthaman, M.P.2
Menchhofer, P.A.3
Dehoff, R.R.4
Bridges, C.A.5
Chi, M.6
Guo, B.7
Sun, X.G.8
Dai, S.9
-
57
-
-
84883863821
-
2: a new anode material for rechargeable sodium ion batteries
-
2: a new anode material for rechargeable sodium ion batteries. Chem Commun 2013, 49:8973-8975.
-
(2013)
Chem Commun
, vol.49
, pp. 8973-8975
-
-
Xu, Y.1
Lotfabad, E.M.2
Wang, H.3
Farbod, B.4
Xu, Z.5
Kohandehghan, A.6
Mitlin, D.7
-
58
-
-
84877687451
-
Metal oxides and oxysalts as anode materials for lithium ion batteries
-
Reddy MV, Subba Rao GV, Chowdari BVR. Metal oxides and oxysalts as anode materials for lithium ion batteries. Chem Rev 2013, 113:5364-5457.
-
(2013)
Chem Rev
, vol.113
, pp. 5364-5457
-
-
Reddy, M.V.1
Subba Rao, G.V.2
Chowdari, B.V.R.3
-
59
-
-
84879198997
-
2
-
2. Electrochim Acta 2013, 106:143-148.
-
(2013)
Electrochim Acta
, vol.106
, pp. 143-148
-
-
Reddy, M.V.1
Andreea, L.Y.T.2
Ling, A.Y.3
Hwee, J.N.C.4
Lin, C.A.5
Adams, S.6
Loh, K.P.7
Mathe, M.K.8
Ozoemena, K.I.9
Chowdari, B.V.R.10
-
60
-
-
84887854776
-
2 nanowires sodium ion batteries
-
2 nanowires sodium ion batteries. Nano Lett 2013, 13:5203-5211.
-
(2013)
Nano Lett
, vol.13
, pp. 5203-5211
-
-
Gu, M.1
Kushima, A.2
Shao, Y.3
Zhang, J.G.4
Liu, J.5
Browning, N.D.6
Li, J.7
Wang, C.8
-
61
-
-
84876527043
-
2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance
-
2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem Commun 2013, 49:3131-3133.
-
(2013)
Chem Commun
, vol.49
, pp. 3131-3133
-
-
Su, D.1
Ahn, H.J.2
Wang, G.3
-
62
-
-
84873040979
-
2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries
-
2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem Commun 2013, 29:8-11.
-
(2013)
Electrochem Commun
, vol.29
, pp. 8-11
-
-
Wang, Y.1
Su, D.2
Wang, C.3
Wang, G.4
-
63
-
-
84887067239
-
Facile fabrication of CuO nanosheets on Cu substrate as anode materials for electrochemical energy storage
-
Liu Y, Qiao Y, Zhang W, Hu P, Chen C, Li Z, Yuan L, Hu X, Huang Y. Facile fabrication of CuO nanosheets on Cu substrate as anode materials for electrochemical energy storage. J Alloys Compd 2014, 586:208-215.
-
(2014)
J Alloys Compd
, vol.586
, pp. 208-215
-
-
Liu, Y.1
Qiao, Y.2
Zhang, W.3
Hu, P.4
Chen, C.5
Li, Z.6
Yuan, L.7
Hu, X.8
Huang, Y.9
-
64
-
-
84878686218
-
Nanostructured iron ((III) oxyhydroxide/(VI) oxide) composite as a reversible Li, Na and K-ion insertion electrode for energy storage devices
-
Do GX, Paul BJ, Mathew V, Kim J. Nanostructured iron ((III) oxyhydroxide/(VI) oxide) composite as a reversible Li, Na and K-ion insertion electrode for energy storage devices. J Mater Chem A 2013, 1:7185-7190.
-
(2013)
J Mater Chem A
, vol.1
, pp. 7185-7190
-
-
Do, G.X.1
Paul, B.J.2
Mathew, V.3
Kim, J.4
-
65
-
-
84873866132
-
Intercalation of sodium ions into hollow iron oxide nanoparticles
-
Koo B, Chattopadhyay S, Shibata T, Prakapenka VB, Johnson CS, Rajh T, Shevchenko E. Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem Mater 2013, 25:245-252.
-
(2013)
Chem Mater
, vol.25
, pp. 245-252
-
-
Koo, B.1
Chattopadhyay, S.2
Shibata, T.3
Prakapenka, V.B.4
Johnson, C.S.5
Rajh, T.6
Shevchenko, E.7
-
66
-
-
84881193201
-
Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide
-
Valvo M, Lindgren M, Lafont L, Björefors F, Edstrom K. Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide. J Power Sources 2014, 245:967-978.
-
(2014)
J Power Sources
, vol.245
, pp. 967-978
-
-
Valvo, M.1
Lindgren, M.2
Lafont, L.3
Björefors, F.4
Edstrom, K.5
-
68
-
-
79960489312
-
Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life
-
Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf LV, Yang Z, Liu J. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 2011, 23:3155-3160.
-
(2011)
Adv Mater
, vol.23
, pp. 3155-3160
-
-
Cao, Y.1
Xiao, L.2
Wang, W.3
Choi, D.4
Nie, Z.5
Yu, J.6
Saraf, L.V.7
Yang, Z.8
Liu, J.9
-
72
-
-
0034712068
-
Superplastic extensibility of nanocrystalline copper at room temperature
-
Lu L, Sui ML, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature. Science 2000, 287:1463-1466.
-
(2000)
Science
, vol.287
, pp. 1463-1466
-
-
Lu, L.1
Sui, M.L.2
Lu, K.3
-
73
-
-
0033594490
-
Low-temperature superplasticity in nanostructured nickel and metal alloys
-
McFadden SX, Mishra RS, Valiev RZ, Zhilyaev AP, Mukherjee AK. Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 1999, 398:684-686.
-
(1999)
Nature
, vol.398
, pp. 684-686
-
-
McFadden, S.X.1
Mishra, R.S.2
Valiev, R.Z.3
Zhilyaev, A.P.4
Mukherjee, A.K.5
-
76
-
-
84879932055
-
AlSb thin films as negative electrodes for Li-ion and Na-ion batteries
-
Baggetto L, Marszewski M, Górka J, Jaroniec M, Veith GM. AlSb thin films as negative electrodes for Li-ion and Na-ion batteries. J Power Sources 2013, 243:699-705.
-
(2013)
J Power Sources
, vol.243
, pp. 699-705
-
-
Baggetto, L.1
Marszewski, M.2
Górka, J.3
Jaroniec, M.4
Veith, G.M.5
-
77
-
-
84884339509
-
x active/inactive nanocomposite negative electrodes for Na-ion batteries
-
x active/inactive nanocomposite negative electrodes for Na-ion batteries. Electrochim Acta 2013, 112:133-137.
-
(2013)
Electrochim Acta
, vol.112
, pp. 133-137
-
-
Thorne, J.S.1
Dunlap, R.A.2
Obrovac, M.N.3
-
80
-
-
84876516715
-
Tin-coated viral nanoforests as sodium-ion battery anodes
-
Liu Y, Xu Y, Zhu Y, Culver JN, Lundgren CA, Xu K, Wang C. Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 2013, 7:3627-3634.
-
(2013)
ACS Nano
, vol.7
, pp. 3627-3634
-
-
Liu, Y.1
Xu, Y.2
Zhu, Y.3
Culver, J.N.4
Lundgren, C.A.5
Xu, K.6
Wang, C.7
-
81
-
-
84884240801
-
Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries
-
Lin YM, Abel PR, Gupta A, Goodenough JB, Heller A, Mullins CB. Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries. ACS Appl Mater Interfaces 2013, 5:8273-8277.
-
(2013)
ACS Appl Mater Interfaces
, vol.5
, pp. 8273-8277
-
-
Lin, Y.M.1
Abel, P.R.2
Gupta, A.3
Goodenough, J.B.4
Heller, A.5
Mullins, C.B.6
-
82
-
-
84877311399
-
Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries
-
Darwiche A, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries. Electrochem Commun 2013, 32:18-21.
-
(2013)
Electrochem Commun
, vol.32
, pp. 18-21
-
-
Darwiche, A.1
Sougrati, M.T.2
Fraisse, B.3
Stievano, L.4
Monconduit, L.5
-
83
-
-
84863230428
-
High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications
-
Xiao L, Cao Y, Xiao J, Wang W, Kovarik L, Nie Z, Liu J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun 2012, 48:3321-3323.
-
(2012)
Chem Commun
, vol.48
, pp. 3321-3323
-
-
Xiao, L.1
Cao, Y.2
Xiao, J.3
Wang, W.4
Kovarik, L.5
Nie, Z.6
Liu, J.7
-
84
-
-
84869865643
-
SiC-Sb-C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries
-
Wu L, Pei F, Mao R, Wu F, Wu Y, Qian J, Cao Y, Ai X, Yang H. SiC-Sb-C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries. Electrochim Acta 2013, 87:41-45.
-
(2013)
Electrochim Acta
, vol.87
, pp. 41-45
-
-
Wu, L.1
Pei, F.2
Mao, R.3
Wu, F.4
Wu, Y.5
Qian, J.6
Cao, Y.7
Ai, X.8
Yang, H.9
-
85
-
-
84882600351
-
New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems
-
Shirpour M, Cabana J, Doeff M. New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems. Energy Environ Sci 2013, 6:2538-2547.
-
(2013)
Energy Environ Sci
, vol.6
, pp. 2538-2547
-
-
Shirpour, M.1
Cabana, J.2
Doeff, M.3
-
86
-
-
84871808934
-
7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates
-
7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates. Nanoscale 2013, 5:594-599.
-
(2013)
Nanoscale
, vol.5
, pp. 594-599
-
-
Wang, W.1
Yu, C.2
Lin, Z.3
Hou, J.4
Zhu, H.5
Jiao, S.6
-
87
-
-
84871786222
-
Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries
-
Wang W, Yu C, Lin Z, Hou J, Zhu H, Jiao S. Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries. RSC Adv 2013, 3:1041-1044.
-
(2013)
RSC Adv
, vol.3
, pp. 1041-1044
-
-
Wang, W.1
Yu, C.2
Lin, Z.3
Hou, J.4
Zhu, H.5
Jiao, S.6
-
89
-
-
82555195041
-
Copper hexacyanoferrate battery electrodes with long cycle life and high power
-
Wessells CD, Huggins RA, Cui Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat Commun 2011, 2:1-5.
-
(2011)
Nat Commun
, vol.2
, pp. 1-5
-
-
Wessells, C.D.1
Huggins, R.A.2
Cui, Y.3
-
90
-
-
84863691641
-
Sodium terephthalate as an organic anode material for sodium ion batteries
-
Park Y, Shin DS, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater 2012, 24:3562-3567.
-
(2012)
Adv Mater
, vol.24
, pp. 3562-3567
-
-
Park, Y.1
Shin, D.S.2
Woo, S.H.3
Choi, N.S.4
Shin, K.H.5
Oh, S.M.6
Lee, K.T.7
Hong, S.Y.8
-
91
-
-
84867316021
-
4) as high performance anode material for low-cost room-temperature sodium-ion battery
-
4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater 2012, 2:962-965.
-
(2012)
Adv Energy Mater
, vol.2
, pp. 962-965
-
-
Zhao, L.1
Zhao, J.2
Hu, Y.S.3
Li, H.4
Zhou, Z.5
Armand, M.6
Chen, L.7
-
92
-
-
84876013132
-
Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li- and Na-ion batteries
-
Zhao RR, Cao YL, Ai XP, Yang HX. Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li- and Na-ion batteries. J Electroanal Chem 2013, 688:93-97.
-
(2013)
J Electroanal Chem
, vol.688
, pp. 93-97
-
-
Zhao, R.R.1
Cao, Y.L.2
Ai, X.P.3
Yang, H.X.4
-
93
-
-
84861442574
-
6 in sodium and lithium batteries
-
6 in sodium and lithium batteries. Solid State Ion 2012, 218:35-40.
-
(2012)
Solid State Ion
, vol.218
, pp. 35-40
-
-
Shakoor, R.A.1
Lim, S.Y.2
Kim, H.3
Nam, K.W.4
Kang, J.K.5
Kang, K.6
Choi, J.W.7
-
94
-
-
84871387893
-
Interfacial sodium storage in NaF-Ti nanocomposites
-
Liu WM, Sun Q, Fu ZW. Interfacial sodium storage in NaF-Ti nanocomposites. Electrochem Commun 2013, 27:156-159.
-
(2013)
Electrochem Commun
, vol.27
, pp. 156-159
-
-
Liu, W.M.1
Sun, Q.2
Fu, Z.W.3
-
99
-
-
80052086268
-
Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes
-
Kim D, Kang SH, Slater M, Rood S, Vaughey JT, Karan N, Balasubramanian M, Johnson CS. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv Energy Mater 2011, 1:333-336.
-
(2011)
Adv Energy Mater
, vol.1
, pp. 333-336
-
-
Kim, D.1
Kang, S.H.2
Slater, M.3
Rood, S.4
Vaughey, J.T.5
Karan, N.6
Balasubramanian, M.7
Johnson, C.S.8
-
102
-
-
0020810468
-
2 (M′ Cr, Fe, Co, Ni)
-
2 (M′ Cr, Fe, Co, Ni). Synth Met 1983, 6:211-217.
-
(1983)
Synth Met
, vol.6
, pp. 211-217
-
-
Miyazaki, S.1
Kikkawa, S.2
Koizumi, M.3
-
105
-
-
82955164035
-
NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes
-
Xia X, Dahn JR. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem Solid-State Lett 2012, 15:A1-A4.
-
(2012)
Electrochem Solid-State Lett
, vol.15
, pp. A1-A4
-
-
Xia, X.1
Dahn, J.R.2
-
111
-
-
84880181860
-
Designing high-capacity cathode materials for sodium-ion batteries
-
Jian Z, Yu H, Zhou H. Designing high-capacity cathode materials for sodium-ion batteries. Electrochem Commun 2013, 34:215-218.
-
(2013)
Electrochem Commun
, vol.34
, pp. 215-218
-
-
Jian, Z.1
Yu, H.2
Zhou, H.3
-
113
-
-
84876518876
-
2 microflakes as a stable cathode material for sodium-ion batteries
-
2 microflakes as a stable cathode material for sodium-ion batteries. J Mater Chem A 2013, 1:3895-3899.
-
(2013)
J Mater Chem A
, vol.1
, pp. 3895-3899
-
-
Yuan, D.1
He, W.2
Pei, F.3
Wu, F.4
Wu, Y.5
Qian, J.6
Cao, Y.7
Ai, X.8
Yang, H.9
-
115
-
-
84872942797
-
Toward Na-ion batteries-synthesis and characterization of a novel high capacity Na Ion intercalation material
-
Buchholz D, Moretti A, Kloepsch R, Nowak S, Siozios V, Winter M, Passerini S. Toward Na-ion batteries-synthesis and characterization of a novel high capacity Na Ion intercalation material. Chem Mater 2013, 25:142-148.
-
(2013)
Chem Mater
, vol.25
, pp. 142-148
-
-
Buchholz, D.1
Moretti, A.2
Kloepsch, R.3
Nowak, S.4
Siozios, V.5
Winter, M.6
Passerini, S.7
-
116
-
-
84884559638
-
Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte
-
Chagas LC, Buchholz D, Wu L, Vortmann B, Passerini S. Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte. J Power Sources 2014, 247:377-383.
-
(2014)
J Power Sources
, vol.247
, pp. 377-383
-
-
Chagas, L.C.1
Buchholz, D.2
Wu, L.3
Vortmann, B.4
Passerini, S.5
-
120
-
-
84856182093
-
Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries
-
Tepavcevic S, Xiong X, Stamenkovic VR, Zuo X, Balasubramanian M, Prakapenka VB, Johnson CS, Rajh T. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 2012, 6:530-538.
-
(2012)
ACS Nano
, vol.6
, pp. 530-538
-
-
Tepavcevic, S.1
Xiong, X.2
Stamenkovic, V.R.3
Zuo, X.4
Balasubramanian, M.5
Prakapenka, V.B.6
Johnson, C.S.7
Rajh, T.8
-
125
-
-
84878090213
-
2 electrodes for non-aqueous sodium batteries
-
2 electrodes for non-aqueous sodium batteries. RSC Adv 2013, 3:6650-6655.
-
(2013)
RSC Adv
, vol.3
, pp. 6650-6655
-
-
Zhao, L.1
Ni, J.2
Wang, H.3
Gao, L.4
-
126
-
-
84881247160
-
2 nanoplates as cathode materials for sodium- Ion batteries with enhanced performance
-
2 nanoplates as cathode materials for sodium- Ion batteries with enhanced performance. Chem Eur J 2013, 19:10884-10889.
-
(2013)
Chem Eur J
, vol.19
, pp. 10884-10889
-
-
Su, D.1
Wang, C.2
Ahn, H.3
Wang, G.4
-
127
-
-
76449111593
-
18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device
-
18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem Commun 2010, 12:463-466.
-
(2010)
Electrochem Commun
, vol.12
, pp. 463-466
-
-
Whitacre, J.F.1
Tevar, A.2
Sharma, S.3
-
128
-
-
84886178104
-
2 cathode material for sodium ion batteries when cycled in different voltage ranges
-
2 cathode material for sodium ion batteries when cycled in different voltage ranges. Electrochim Acta 2013, 113:200-204.
-
(2013)
Electrochim Acta
, vol.113
, pp. 200-204
-
-
Wang, H.1
Yang, B.2
Liao, X.Z.3
Xu, J.4
Yang, D.5
He, Y.S.6
Ma, Z.F.7
-
129
-
-
84876514737
-
2 nanorods as high capacity cathode materials for sodium ion batteries
-
2 nanorods as high capacity cathode materials for sodium ion batteries. J Mater Chem A 2013, 1:4845-4850.
-
(2013)
J Mater Chem A
, vol.1
, pp. 4845-4850
-
-
Su, D.1
Ahn, H.J.2
Wang, G.3
-
130
-
-
0031124233
-
Phospho-olivines as positive-electrode materials for rechargeable lithium batteries
-
Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 1997, 144:1188-1194.
-
(1997)
J Electrochem Soc
, vol.144
, pp. 1188-1194
-
-
Padhi, A.K.1
Nanjundaswamy, K.S.2
Masquelier, C.3
Okada, S.4
Goodenough, J.B.5
-
133
-
-
72449168332
-
A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries
-
Recham N, Chotard JN, Dupont L, Delacourt C, Walker W, Armand M, Tarascon JM. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat Mater 2010, 9:68-74.
-
(2010)
Nat Mater
, vol.9
, pp. 68-74
-
-
Recham, N.1
Chotard, J.N.2
Dupont, L.3
Delacourt, C.4
Walker, W.5
Armand, M.6
Tarascon, J.M.7
-
134
-
-
80052193621
-
Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
-
Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma X, Ceder G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 2011, 4:3680-3688.
-
(2011)
Energy Environ Sci
, vol.4
, pp. 3680-3688
-
-
Ong, S.P.1
Chevrier, V.L.2
Hautier, G.3
Jain, A.4
Moore, C.5
Kim, S.6
Ma, X.7
Ceder, G.8
-
136
-
-
84863459889
-
New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study
-
Kim H, Park I, Seo DH, Lee S, Kim SW, Kwon WJ, Park YU, Kim CS, Jeo S, Kang K. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J Am Chem Soc 2012, 134:10369-10372.
-
(2012)
J Am Chem Soc
, vol.134
, pp. 10369-10372
-
-
Kim, H.1
Park, I.2
Seo, D.H.3
Lee, S.4
Kim, S.W.5
Kwon, W.J.6
Park, Y.U.7
Kim, C.S.8
Jeo, S.9
Kang, K.10
-
137
-
-
84864987293
-
4
-
4. J Mater Chem 2012, 22:17421-17423.
-
(2012)
J Mater Chem
, vol.22
, pp. 17421-17423
-
-
Casas-Cabanas, M.1
Roddatis, V.2
Saurel, D.3
Kubiak, P.4
Carretero-Gonzalez, J.5
Palomares, V.6
Serras, P.7
Rojo, T.8
-
139
-
-
80051759616
-
Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries
-
Lee KT, Ramesh TN, Nan F, Botton G, Nazar F. Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem Mater 2011, 23:3593-3600.
-
(2011)
Chem Mater
, vol.23
, pp. 3593-3600
-
-
Lee, K.T.1
Ramesh, T.N.2
Nan, F.3
Botton, G.4
Nazar, F.5
-
140
-
-
84869171550
-
4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes
-
4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. Nano Lett 2012, 12:5664-5668.
-
(2012)
Nano Lett
, vol.12
, pp. 5664-5668
-
-
Liu, Y.1
Xu, Y.2
Han, X.3
Pellegrinelli, C.4
Zhu, Y.5
Zhu, H.6
Wan, Y.7
Chung, A.C.8
Zhu, Y.9
Zhu, H.10
-
143
-
-
84884476433
-
A new high-energy cathode for a Na-Ion battery with ultrahigh stability
-
Park YU, Seo DH, Kwon HS, Kim B, Kim J, Kim H, Kim I, Yoo HI, Kang K. A new high-energy cathode for a Na-Ion battery with ultrahigh stability. J Am Chem Soc 2013, 135:13870-13878.
-
(2013)
J Am Chem Soc
, vol.135
, pp. 13870-13878
-
-
Park, Y.U.1
Seo, D.H.2
Kwon, H.S.3
Kim, B.4
Kim, J.5
Kim, H.6
Kim, I.7
Yoo, H.I.8
Kang, K.9
-
146
-
-
84874041715
-
Direct hydrofluorothermal synthesis of sodium transition metal fluorosulfates as possible Na-ion battery cathode materials
-
Wang Q, Madsen A, Owen JR, Weller MT. Direct hydrofluorothermal synthesis of sodium transition metal fluorosulfates as possible Na-ion battery cathode materials. Chem Commun 2013, 49:2121-2123.
-
(2013)
Chem Commun
, vol.49
, pp. 2121-2123
-
-
Wang, Q.1
Madsen, A.2
Owen, J.R.3
Weller, M.T.4
-
147
-
-
0031142514
-
-
Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB. J Electrochem Soc 1997, 144:1609-1613.
-
(1997)
J Electrochem Soc
, vol.144
, pp. 1609-1613
-
-
Padhi, A.K.1
Nanjundaswamy, K.S.2
Masquelier, C.3
Okada, S.4
Goodenough, J.B.5
-
152
-
-
84866653380
-
Sodium iron pyrophosphate: a novel 3.0 V iron-based cathode for sodium-ion batteries
-
Barpanda P, Ye T, Nishimura S, Chung SC, Yamada Y, Okubo M, Zhou H, Yamada A, Zhou H, Yamada A. Sodium iron pyrophosphate: a novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochem Commun 2012, 24:116-119.
-
(2012)
Electrochem Commun
, vol.24
, pp. 116-119
-
-
Barpanda, P.1
Ye, T.2
Nishimura, S.3
Chung, S.C.4
Yamada, Y.5
Okubo, M.6
Zhou, H.7
Yamada, A.8
Zhou, H.9
Yamada, A.10
-
153
-
-
84884185168
-
7: a safe cathode for rechargeable sodium-ion batteries
-
7: a safe cathode for rechargeable sodium-ion batteries. Chem Mater 2013, 25:3480-3487.
-
(2013)
Chem Mater
, vol.25
, pp. 3480-3487
-
-
Barpanda, P.1
Liu, G.2
Ling, C.D.3
Tamuru, M.4
Avdeev, M.5
Chung, S.C.6
Yamada, Y.7
Yamada, A.8
-
156
-
-
84874449160
-
7 pyrophosphate cathode for sodium-ion batteries
-
7 pyrophosphate cathode for sodium-ion batteries. RSC Adv 2013, 3:3857-3860.
-
(2013)
RSC Adv
, vol.3
, pp. 3857-3860
-
-
Barpanda, P.1
Lu, J.2
Ye, T.3
Kajiyama, M.4
Chung, S.C.5
Yabuuchi, N.6
Komaba, S.7
Yamada, A.8
-
160
-
-
84883864394
-
Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries
-
Masquelier C, Croguennec L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 2013, 113:6552-6591.
-
(2013)
Chem Rev
, vol.113
, pp. 6552-6591
-
-
Masquelier, C.1
Croguennec, L.2
-
163
-
-
77949717617
-
Performance of NASICON symmetric cell with ionic liquid electrolyte
-
Plashnitsa LS, Kobayashi E, Noguchi Y, Okada S, Yamaki J. Performance of NASICON symmetric cell with ionic liquid electrolyte. J Electrochem Soc 2010, 157:A536-A543.
-
(2010)
J Electrochem Soc
, vol.157
, pp. A536-A543
-
-
Plashnitsa, L.S.1
Kobayashi, E.2
Noguchi, Y.3
Okada, S.4
Yamaki, J.5
-
164
-
-
83055179318
-
3 as novel electrode material for sodium ion batteries
-
3 as novel electrode material for sodium ion batteries. Electrochem Commun 2012, 14:86-89.
-
(2012)
Electrochem Commun
, vol.14
, pp. 86-89
-
-
Jian, Z.1
Zhao, L.2
Pan, H.3
Hu, Y.S.4
Li, H.5
Chen, W.6
Chen, L.7
-
166
-
-
84870443815
-
3/C cathode prepared by pyro-synthesis for sodium-ion batteries
-
3/C cathode prepared by pyro-synthesis for sodium-ion batteries. J Mater Chem 2012, 22:20857-20860.
-
(2012)
J Mater Chem
, vol.22
, pp. 20857-20860
-
-
Kang, J.1
Baek, S.2
Mathew, V.3
Gim, J.4
Song, J.5
Park, H.6
Chae, E.7
Rai, A.K.8
Kim, J.9
-
167
-
-
84883294973
-
3 as a high rate cathode material for sodium ion batteries
-
3 as a high rate cathode material for sodium ion batteries. J Mater Chem A 2013, 1:11350-11354.
-
(2013)
J Mater Chem A
, vol.1
, pp. 11350-11354
-
-
Jung, Y.H.1
Lim, C.H.2
Kim, D.K.3
-
168
-
-
84886394525
-
Improving the electrochemical performance of titanium phosphate-based electrodes in sodium batteries by lithium substitution
-
Aragon MJ, Abarca CV, Lavela P, Tirado JL. Improving the electrochemical performance of titanium phosphate-based electrodes in sodium batteries by lithium substitution. J Mater Chem A 2013, 1:13963-13969.
-
(2013)
J Mater Chem A
, vol.1
, pp. 13963-13969
-
-
Aragon, M.J.1
Abarca, C.V.2
Lavela, P.3
Tirado, J.L.4
-
170
-
-
84865596233
-
3 thin film as cathode for rechargeable sodium ion battery
-
3 thin film as cathode for rechargeable sodium ion battery. Electrochem Commun 2012, 23:145-148.
-
(2012)
Electrochem Commun
, vol.23
, pp. 145-148
-
-
Sun, Q.1
Ren, Q.Q.2
Fu, Z.W.3
-
172
-
-
84892572739
-
Indigo carmine: an organic crystal as a positive-electrode material for rechargeable sodium batteries
-
Yao M, Kuratani K, Kojima T, Takeichi N, Senoh H, Kiyobayasi T. Indigo carmine: an organic crystal as a positive-electrode material for rechargeable sodium batteries. Sci Rep 2014, 4:1-6.
-
(2014)
Sci Rep
, vol.4
, pp. 1-6
-
-
Yao, M.1
Kuratani, K.2
Kojima, T.3
Takeichi, N.4
Senoh, H.5
Kiyobayasi, T.6
-
173
-
-
84862581979
-
An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries
-
Zhao R, Zhu L, Cao Y, Ai X, Yang HX. An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries. Electrochem Commun 2012, 21:36-38.
-
(2012)
Electrochem Commun
, vol.21
, pp. 36-38
-
-
Zhao, R.1
Zhu, L.2
Cao, Y.3
Ai, X.4
Yang, H.X.5
-
174
-
-
84878643039
-
2Se with facile synthesis as a cathode material for rechargeable sodium batteries
-
2Se with facile synthesis as a cathode material for rechargeable sodium batteries. Chem Commun 2013, 49:5868-5870.
-
(2013)
Chem Commun
, vol.49
, pp. 5868-5870
-
-
Yue, J.L.1
Sun, Q.2
Fu, Z.W.3
-
176
-
-
84883106550
-
Volatile heterometallic precursors for the low-temperature synthesis of prospective sodium ion battery cathode materials
-
Wei Z, Filatov AS, Dikarev EV. Volatile heterometallic precursors for the low-temperature synthesis of prospective sodium ion battery cathode materials. J Am Chem Soc 2013, 135:12216-12219.
-
(2013)
J Am Chem Soc
, vol.135
, pp. 12216-12219
-
-
Wei, Z.1
Filatov, A.S.2
Dikarev, E.V.3
-
177
-
-
84892163449
-
A superior low-cost cathode for a Na-Ion battery
-
Wang L, Lu Y, Xu M, Cheng J, Zhang D, Goodenough JB. A superior low-cost cathode for a Na-Ion battery. Angew Chem Int Edn 2013, 125:2018-2021.
-
(2013)
Angew Chem Int Edn
, vol.125
, pp. 2018-2021
-
-
Wang, L.1
Lu, Y.2
Xu, M.3
Cheng, J.4
Zhang, D.5
Goodenough, J.B.6
-
179
-
-
84880607031
-
3): a new intercalation cathode material for Na-Ion batteries
-
3): a new intercalation cathode material for Na-Ion batteries. Chem Mater 2013, 25:2777-2786.
-
(2013)
Chem Mater
, vol.25
, pp. 2777-2786
-
-
Chen, H.1
Hao, Q.2
Zivkovic, O.3
Hautier, G.4
Du, L.S.5
Tang, Y.6
Hu, Y.Y.7
Ma, X.8
Grey, C.P.9
Ceder, G.10
-
180
-
-
84886917279
-
6/NaCl solid solution cathode material with an enhanced electrochemical performance for sodium ion batteries
-
6/NaCl solid solution cathode material with an enhanced electrochemical performance for sodium ion batteries. J Mater Chem A 2013, 1:13417-13421.
-
(2013)
J Mater Chem A
, vol.1
, pp. 13417-13421
-
-
Yang, D.1
Liao, X.Z.2
Huang, B.3
Shen, J.4
He, Y.S.5
Ma, Z.F.6
-
184
-
-
84874848064
-
A sodium manganese ferrocyanide thin film for Na-ion batteries
-
Matsuda T, Takachi M, Moritomo Y. A sodium manganese ferrocyanide thin film for Na-ion batteries. Chem Commun 2013, 49:2750-2752.
-
(2013)
Chem Commun
, vol.49
, pp. 2750-2752
-
-
Matsuda, T.1
Takachi, M.2
Moritomo, Y.3
-
185
-
-
84886835595
-
A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries
-
You Y, Wu XL, Yin YX, Guo YG. A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. J Mater Chem A 2013, 1:14061-14065.
-
(2013)
J Mater Chem A
, vol.1
, pp. 14061-14065
-
-
You, Y.1
Wu, X.L.2
Yin, Y.X.3
Guo, Y.G.4
|