메뉴 건너뛰기




Volumn 42, Issue , 2014, Pages 23-26

Feature-based supervised lung nodule segmentation

Author keywords

Ground glass opacity; Lung nodule segmentation; Supervised learning

Indexed keywords

GLASS; INFORMATION SCIENCE; NEAREST NEIGHBOR SEARCH; NEURAL NETWORKS; OPACITY; REGRESSION ANALYSIS; SUPERVISED LEARNING;

EID: 84927665864     PISSN: 16800737     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-319-03005-0_7     Document Type: Conference Paper
Times cited : (11)

References (13)
  • 2
    • 82155191313 scopus 로고    scopus 로고
    • Automated Segmentation Refinement of Small Lung Nodules in CT Scans by Local Shape Analysis
    • Diciotti S, Lombardo S, Falchini M et al. Automated Segmentation Refinement of Small Lung Nodules in CT Scans by Local Shape Analysis IEEE Trans. on Biomedical Engineering. 2011; 58: 3418-3428.
    • (2011) IEEE Trans. on Biomedical Engineering , vol.58 , pp. 3418-3428
    • Diciotti, S.1    Lombardo, S.2    Falchini, M.3
  • 3
    • 41649099132 scopus 로고    scopus 로고
    • Segmentation of pulmonary nodules in thoracic CT scans: A region growing approach
    • Dehmeshki J, Amin H, Valdivieso M et al. Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach IEEE Trans. Med. Imaging. 2008; 27: 467-480.
    • (2008) IEEE Trans. Med. Imaging , vol.27 , pp. 467-480
    • Dehmeshki, J.1    Amin, H.2    Valdivieso, M.3
  • 5
    • 78449277422 scopus 로고    scopus 로고
    • Shape “Break-and-Repair” Strategy and Its Application to Automated Medical Image Segmentation
    • Pu J, Paik DS, Meng X et al. Shape “Break-and-Repair” Strategy and Its Application to Automated Medical Image Segmentation IEEE Trans. on Visualization and Computer Graphics. 2011; 17: 3418-3428.
    • (2011) IEEE Trans. on Visualization and Computer Graphics , vol.17 , pp. 3418-3428
    • Pu, J.1    Paik, D.S.2    Meng, X.3
  • 6
    • 84875375417 scopus 로고    scopus 로고
    • Lung nodule segmentation and recognition using SVM classifier and active contour modeling: A complete intelligent system
    • Keshani M, Azimifar Z et al. Lung nodule segmentation and recognition using SVM classifier and active contour modeling: A complete intelligent system Computers in Biology and Medicine. 2013; 43: 287-300.
    • (2013) Computers in Biology and Medicine , vol.43 , pp. 287-300
    • Keshani, M.1    Azimifar, Z.2
  • 7
    • 33751348788 scopus 로고    scopus 로고
    • Nodule management protocol of the NELSON randomised lung cancer screening trial
    • Xu DM, Gietema HA, Koning H de et al. Nodule management protocol of the NELSON randomised lung cancer screening trial Lung Cancer. 2006; 54: 177-184.
    • (2006) Lung Cancer , vol.54 , pp. 177-184
    • Xu, D.M.1    Gietema, H.A.2    de Koning, H.3
  • 9
    • 0242720664 scopus 로고    scopus 로고
    • Anti-geometric diffusion for adaptive thresholding and fast segmentation
    • Manay S, Yezzi A. Anti-geometric diffusion for adaptive thresholding and fast segmentation IEEE Trans. Image Processing. 2003; 12: 1310-1322.
    • (2003) IEEE Trans. Image Processing , vol.12 , pp. 1310-1322
    • Manay, S.1    Yezzi, A.2
  • 11
    • 79551683342 scopus 로고    scopus 로고
    • Supervised probabilistic segmentation of pulmonary nodules in CT scans
    • Ginneken B van. Supervised probabilistic segmentation of pulmonary nodules in CT scans Med. Image Comp. and Comp.-Assist. Int., LNCS. 2006; 4191: 912-919.
    • (2006) Med. Image Comp. and Comp.-Assist. Int., LNCS , vol.4191 , pp. 912-919
    • van Ginneken, B.1
  • 12
    • 0038710369 scopus 로고    scopus 로고
    • Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography
    • Suzuki K, Armato SG et al. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography Medical Physics. 2003; 30: 1602-1617.
    • (2003) Medical Physics , vol.30 , pp. 1602-1617
    • Suzuki, K.1    Armato, S.G.2
  • 13
    • 67651051867 scopus 로고    scopus 로고
    • An evaluation of four automatic methods of segmenting the subcortical structures in the brain
    • Babalola KO, Patenaude B, Aljabar P et al. An evaluation of four automatic methods of segmenting the subcortical structures in the brain Neuroimage. 2009; 47 (4): 1435-1447.
    • (2009) Neuroimage , vol.47 , Issue.4 , pp. 1435-1447
    • Babalola, K.O.1    Patenaude, B.2    Aljabar, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.