메뉴 건너뛰기




Volumn 27, Issue 4, 2008, Pages 467-480

Segmentation of pulmonary nodules in thoracic CT scans: A region growing approach

Author keywords

Fuzzy connectivity; Local adaptive segmentation; Nodule segmentation; Region growing

Indexed keywords

ALGORITHMS; COMPUTERIZED TOMOGRAPHY; FUZZY SETS; MEDICAL IMAGING; RADIOLOGY;

EID: 41649099132     PISSN: 02780062     EISSN: None     Source Type: Journal    
DOI: 10.1109/TMI.2007.907555     Document Type: Article
Times cited : (268)

References (27)
  • 1
    • 0035384869 scopus 로고    scopus 로고
    • Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique
    • Jul
    • Y. Lee, T. Hara, H. Fujita, S. Itoh, and T. Ishigaki, "Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique," IEEE Trans. Med. Imag., vol. 20, no. 7, pp. 595-604, Jul. 2001.
    • (2001) IEEE Trans. Med. Imag , vol.20 , Issue.7 , pp. 595-604
    • Lee, Y.1    Hara, T.2    Fujita, H.3    Itoh, S.4    Ishigaki, T.5
  • 2
    • 85034050905 scopus 로고    scopus 로고
    • Automatic detection of small lung nodules on CT utilizing a local density maximum algorithm
    • B. Zhao, G. Gamsu, M. S. Ginsberg, L. Jiang, and H. Schwartz, "Automatic detection of small lung nodules on CT utilizing a local density maximum algorithm," J. Appl. Clin. Med Phys., vol. 4, no. 3, pp. 248-260, 2003.
    • (2003) J. Appl. Clin. Med Phys , vol.4 , Issue.3 , pp. 248-260
    • Zhao, B.1    Gamsu, G.2    Ginsberg, M.S.3    Jiang, L.4    Schwartz, H.5
  • 3
    • 0038710369 scopus 로고    scopus 로고
    • Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT
    • Jul
    • K. Suzuki, S. G. Armota, F. Li, S. Sone, and K. Doi, "Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT," Med. Phys., vol. 30, no. 7, pp. 1602-1617, Jul. 2003.
    • (2003) Med. Phys , vol.30 , Issue.7 , pp. 1602-1617
    • Suzuki, K.1    Armota, S.G.2    Li, F.3    Sone, S.4    Doi, K.5
  • 4
    • 23944435413 scopus 로고    scopus 로고
    • Computer-aided detection of lung nodules: False positive reduction using a 3-D gradient field method and 3-D ellipsoid fitting
    • Z. Y. Ge, B. Sahiner, H. P. Chan, L. M. Hadjiiski, P. N. Cascade, N. Bogot, E. A. Kazerooni, J. Wei, and C. Zou, "Computer-aided detection of lung nodules: False positive reduction using a 3-D gradient field method and 3-D ellipsoid fitting," Med. Phys., vol. 32, pp. 2443-2454, 2005.
    • (2005) Med. Phys , vol.32 , pp. 2443-2454
    • Ge, Z.Y.1    Sahiner, B.2    Chan, H.P.3    Hadjiiski, L.M.4    Cascade, P.N.5    Bogot, N.6    Kazerooni, E.A.7    Wei, J.8    Zou, C.9
  • 8
    • 0036028336 scopus 로고    scopus 로고
    • Automated lung nodule segmentation using dynamic programming and EM based classification
    • N. Xu, N. Ahuja, andR. Bansal, "Automated lung nodule segmentation using dynamic programming and EM based classification," Proc. SPIE, vol. 4684, pp. 666-676, 2002.
    • (2002) Proc. SPIE , vol.4684 , pp. 666-676
    • Xu, N.1    Ahuja, N.2    andR3    Bansal4
  • 9
    • 0032142226 scopus 로고    scopus 로고
    • Quantitative surface characterization of pulmonary nodules based on thin-section CT images
    • Aug
    • Y. Kawata, N. Niki, H. Ohmatsu, R. Kakinuma, K. Eguchi, M. Kaneko, and N. Moriyama, "Quantitative surface characterization of pulmonary nodules based on thin-section CT images," IEEE Trans. Nucl. Sci., vol. 45, no. 4, pp. 2132-2138, Aug. 1998.
    • (1998) IEEE Trans. Nucl. Sci , vol.45 , Issue.4 , pp. 2132-2138
    • Kawata, Y.1    Niki, N.2    Ohmatsu, H.3    Kakinuma, R.4    Eguchi, K.5    Kaneko, M.6    Moriyama, N.7
  • 10
    • 1642329932 scopus 로고    scopus 로고
    • A deformable surface model based on boundary and region information for pulmonary nodule segmentation from 3-D thoracic CT images
    • Y. Kawata, N. Noboru, H. Ohmatsu, and N. Moriyama, "A deformable surface model based on boundary and region information for pulmonary nodule segmentation from 3-D thoracic CT images," IEICE Trans. Inf. Syst., vol. E86-D, pp. 1921-1930, 2003.
    • (2003) IEICE Trans. Inf. Syst , vol.E86-D , pp. 1921-1930
    • Kawata, Y.1    Noboru, N.2    Ohmatsu, H.3    Moriyama, N.4
  • 11
    • 1942484737 scopus 로고    scopus 로고
    • Segmentation of nodules on chest computed tomography for growth assessment
    • Apr
    • W. Mullally, M. Betke, J. Wang, and J. P. Ko, "Segmentation of nodules on chest computed tomography for growth assessment," Med. Phys., vol. 31, no. 4, pp. 839-848, Apr. 2004.
    • (2004) Med. Phys , vol.31 , Issue.4 , pp. 839-848
    • Mullally, W.1    Betke, M.2    Wang, J.3    Ko, J.P.4
  • 12
    • 0036031026 scopus 로고    scopus 로고
    • Automatic segmentation of pulmonary nodules by using dynamic 3-D cross-correlation for interactive CAD systems
    • L. Fan, J. Qian, B. L. Odry, and H. Shen, "Automatic segmentation of pulmonary nodules by using dynamic 3-D cross-correlation for interactive CAD systems," in Proc. SPIE Med. Imag., 2002, vol. 4684, pp. 1362-1369.
    • (2002) Proc. SPIE Med. Imag , vol.4684 , pp. 1362-1369
    • Fan, L.1    Qian, J.2    Odry, B.L.3    Shen, H.4
  • 13
    • 19044373465 scopus 로고    scopus 로고
    • Robust aniostropic gaussian fitting for columetric characterization of pulmonary nodules in multislice ct
    • Mar
    • K. Okada, D. Comaniciu, and A. Krishnan, "Robust aniostropic gaussian fitting for columetric characterization of pulmonary nodules in multislice ct," IEEE Trans. Med. Imag., vol. 24, no. 3, pp. 409-423, Mar. 2005.
    • (2005) IEEE Trans. Med. Imag , vol.24 , Issue.3 , pp. 409-423
    • Okada, K.1    Comaniciu, D.2    Krishnan, A.3
  • 14
    • 24644442879 scopus 로고    scopus 로고
    • Blob segmentation using joint space-intensity likelihood ratio test: Application to 3-D tumor segmentation
    • Jun
    • K. Okada, U. Akdemir, and A. Krishnan, "Blob segmentation using joint space-intensity likelihood ratio test: Application to 3-D tumor segmentation," in IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2005, no. 2, pp. 437-444.
    • (2005) IEEE Conf. Comput. Vis. Pattern Recognit , Issue.2 , pp. 437-444
    • Okada, K.1    Akdemir, U.2    Krishnan, A.3
  • 15
    • 0141954913 scopus 로고    scopus 로고
    • Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images
    • Oct
    • W. J. Kostis, A. P. Reeves, D. F. Yankelevitz, and C. I. Henschke, "Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images," IEEE Trans. Med. Imag., vol. 22, no. 10, pp. 1259-1274, Oct. 2003.
    • (2003) IEEE Trans. Med. Imag , vol.22 , Issue.10 , pp. 1259-1274
    • Kostis, W.J.1    Reeves, A.P.2    Yankelevitz, D.F.3    Henschke, C.I.4
  • 16
    • 0032981298 scopus 로고    scopus 로고
    • Two-dimensional multi-criterion segmentation of pulmonary nodules on helical CT images
    • Jun
    • B. Zhao, D. Yankelevitz, A. P. Reeves, and C. T. Henschke, "Two-dimensional multi-criterion segmentation of pulmonary nodules on helical CT images," Med. Phys., vol. 26, no. 6, pp. 889-895, Jun. 1999.
    • (1999) Med. Phys , vol.26 , Issue.6 , pp. 889-895
    • Zhao, B.1    Yankelevitz, D.2    Reeves, A.P.3    Henschke, C.T.4
  • 17
    • 0032663031 scopus 로고    scopus 로고
    • Three-dimensional multicriterion automatic segmentation of pulmonary nodules of helical computed tomography images
    • B. Zhao, A. P. Reeves, D. F. Yankelevitz, and C. T. Henshcke, "Three-dimensional multicriterion automatic segmentation of pulmonary nodules of helical computed tomography images," Opt. Eng., vol. 38, pp. 1340-1347, 1999.
    • (1999) Opt. Eng , vol.38 , pp. 1340-1347
    • Zhao, B.1    Reeves, A.P.2    Yankelevitz, D.F.3    Henshcke, C.T.4
  • 18
    • 0032124126 scopus 로고    scopus 로고
    • Region growing: A new approach
    • Jul
    • S. A. Hijjatoleslami and J. Kitter, "Region growing: A new approach," IEEE Trans. Image Process., vol. 7, no. 7, pp. 1079-1084, Jul. 1998.
    • (1998) IEEE Trans. Image Process , vol.7 , Issue.7 , pp. 1079-1084
    • Hijjatoleslami, S.A.1    Kitter, J.2
  • 19
    • 0030145389 scopus 로고    scopus 로고
    • Fuzzy connectedness and object delineation: Theory, algorithm, and validation
    • J. K. Udupa and S. Samarasekera, "Fuzzy connectedness and object delineation: Theory, algorithm, and validation," Graph. Models Image Process., vol. 58, no. 3, pp. 246-261, 1996.
    • (1996) Graph. Models Image Process , vol.58 , Issue.3 , pp. 246-261
    • Udupa, J.K.1    Samarasekera, S.2
  • 20
    • 0031240180 scopus 로고    scopus 로고
    • Multiple sclerosis lesion quantification using fuzzy-connectedness principles
    • Oct
    • J. K. Udupa, L. Wei, S. Samarasekera, Y. Miki, M. A. Buchem, and R. I. Grossman, "Multiple sclerosis lesion quantification using fuzzy-connectedness principles," IEEE Trans Med. Imag., vol. 16, no. 5, pp. 598-609, Oct. 1997.
    • (1997) IEEE Trans Med. Imag , vol.16 , Issue.5 , pp. 598-609
    • Udupa, J.K.1    Wei, L.2    Samarasekera, S.3    Miki, Y.4    Buchem, M.A.5    Grossman, R.I.6
  • 22
    • 1542362364 scopus 로고    scopus 로고
    • A simplified fuzzy connectedness method used for segmentation of vessel images
    • Sep
    • L. Shuqian, L. Xueli, and G. Zhou, "A simplified fuzzy connectedness method used for segmentation of vessel images," in Proc. 25th Annu. Int. Conf. IEEE Eng. Med. Biol Soc., Sep. 2003, vol. 1, pp. 751-753.
    • (2003) Proc. 25th Annu. Int. Conf. IEEE Eng. Med. Biol Soc , vol.1 , pp. 751-753
    • Shuqian, L.1    Xueli, L.2    Zhou, G.3
  • 23
    • 29144514433 scopus 로고    scopus 로고
    • Intrathoracic airway trees: Segmentation and airway morphology analysis from low-dose CT scans
    • Dec
    • J. Tschirren, E. A. Hoffman, G. McLennan, and M. Sonka, "Intrathoracic airway trees: Segmentation and airway morphology analysis from low-dose CT scans," IEEE Trans. Med. Imag., vol. 24, no. 12, pp. 1529-1539, Dec. 2005.
    • (2005) IEEE Trans. Med. Imag , vol.24 , Issue.12 , pp. 1529-1539
    • Tschirren, J.1    Hoffman, E.A.2    McLennan, G.3    Sonka, M.4
  • 24
    • 0036857217 scopus 로고    scopus 로고
    • Relative fuzzy connect-edness and object definition: Theory, algorithms, and applications in image segmentation
    • Nov
    • J. K. Udupa, P. K. Saha, and R. A. Lotufo, "Relative fuzzy connect-edness and object definition: Theory, algorithms, and applications in image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 11, pp. 1485-1500, Nov. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.11 , pp. 1485-1500
    • Udupa, J.K.1    Saha, P.K.2    Lotufo, R.A.3
  • 26
    • 0032594806 scopus 로고    scopus 로고
    • An adaptive segmentation and 3-D visualisation of the lungs
    • J. Dehmeshki, "An adaptive segmentation and 3-D visualisation of the lungs," Pattern Recognit. Lett., vol. 20, pp. 919-926, 1999.
    • (1999) Pattern Recognit. Lett , vol.20 , pp. 919-926
    • Dehmeshki, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.