메뉴 건너뛰기




Volumn 56, Issue , 2014, Pages 229-259

Rule-based computer aided decision making for traumatic brain injuries

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84927562860     PISSN: 18684394     EISSN: 18684408     Source Type: Book Series    
DOI: 10.1007/978-3-642-40017-9_11     Document Type: Article
Times cited : (3)

References (47)
  • 8
    • 0031473087 scopus 로고    scopus 로고
    • A comparison of the association of helicopter and ground ambulance transport with the outcome of injury in trauma patients transported from the scene
    • Cunningham P, Rutledge R, Baker CC, Clancy TV (1997) A comparison of the association of helicopter and ground ambulance transport with the outcome of injury in trauma patients transported from the scene. J Trauma 43(26): 940-946.
    • (1997) J Trauma , vol.43 , Issue.26 , pp. 940-946
    • Cunningham, P.1    Rutledge, R.2    Baker, C.C.3    Clancy, T.V.4
  • 11
    • 0028032521 scopus 로고
    • Decision support in medicine: Examples from the HELP system
    • Haug PJ, Gardner RM, Tate KE (1994) Decision support in medicine: examples from the HELP system. Comput Biomed Res 27(5): 396-418.
    • (1994) Comput Biomed Res , vol.27 , Issue.5 , pp. 396-418
    • Haug, P.J.1    Gardner, R.M.2    Tate, K.E.3
  • 12
    • 0036491220 scopus 로고    scopus 로고
    • Three decades of research on computer applications in health care: Medical informatics support at the agency for healthcare research and quality
    • Fitzmaurice JM, Adams K, Eisenberg JM (2002) Three decades of research on computer applications in health care: medical informatics support at the agency for healthcare research and quality. J Am Med Inform Assoc 9(2): 144-160.
    • (2002) J Am Med Inform Assoc , vol.9 , Issue.2 , pp. 144-160
    • Fitzmaurice, J.M.1    Adams, K.2    Eisenberg, J.M.3
  • 13
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4. 5
    • Quinlan J (1996) Improved use of continuous attributes in C4. 5. J Artif Intell Res 4: 77-90.
    • (1996) J Artif Intell Res , vol.4 , pp. 77-90
    • Quinlan, J.1
  • 16
    • 0036320447 scopus 로고    scopus 로고
    • Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: A comparison between decision tree analysis and logistic regression
    • Andrews PJ, Sleeman DH, Statham PF, McQuatt A, Corruble V, Jones PA, Howells TP, Macmillan CS (2003) Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression. J Neurosurg 97(2): 440-442.
    • (2003) J Neurosurg , vol.97 , Issue.2 , pp. 440-442
    • Andrews, P.J.1    Sleeman, D.H.2    Statham, P.F.3    McQuatt, A.4    Corruble, V.5    Jones, P.A.6    Howells, T.P.7    Macmillan, C.S.8
  • 17
    • 0034282783 scopus 로고    scopus 로고
    • Combining non-parametric models with logistic regression: An application to motor vehicle injury data
    • Kuhnert PM, Do K, McClure R (2000) Combining non-parametric models with logistic regression: an application to motor vehicle injury data. Comput Stat Data Anal 34(3): 371-386.
    • (2000) Comput Stat Data Anal , vol.34 , Issue.3 , pp. 371-386
    • Kuhnert, P.M.1    Do, K.2    McClure, R.3
  • 19
    • 0027713998 scopus 로고
    • CART and logistic regression analyses of risk factors for first dose hypotension by an ACE-inhibitor
    • Hasford J, Ansari H, Lehmann K (1993) CART and logistic regression analyses of risk factors for first dose hypotension by an ACE-inhibitor. Therapie 48(5): 479-482.
    • (1993) Therapie , vol.48 , Issue.5 , pp. 479-482
    • Hasford, J.1    Ansari, H.2    Lehmann, K.3
  • 20
    • 39049189126 scopus 로고    scopus 로고
    • Combining logistic regression with classification and regression tree to predict quality of care in a home health nursing data set
    • Guo HM, Shyu YI, Chang HK (2006) Combining logistic regression with classification and regression tree to predict quality of care in a home health nursing data set. Stud Health Technol Inf 122: 891.
    • (2006) Stud Health Technol Inf , vol.122 , pp. 891
    • Guo, H.M.1    Shyu, Y.I.2    Chang, H.K.3
  • 23
    • 63349110176 scopus 로고    scopus 로고
    • A comparative analysis of multi-level computerassisted decision making system for traumatic injuries
    • Ji SY, Smith R, Huynh T, Najarian K (2009) A comparative analysis of multi-level computerassisted decision making system for traumatic injuries. BMC Med Inf Decis Making 9: 2.
    • (2009) BMC Med Inf Decis Making , vol.9 , pp. 2
    • Ji, S.Y.1    Smith, R.2    Huynh, T.3    Najarian, K.4
  • 26
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • Besag J (1986) On the statistical analysis of dirty pictures. J R Statist Soc B 48(3): 259-302.
    • (1986) J R Statist Soc B , vol.48 , Issue.3 , pp. 259-302
    • Besag, J.1
  • 28
    • 0036146454 scopus 로고    scopus 로고
    • The problem of bias in training data in regression problems in medical decision support
    • Mac Namee B, Cunningham P, Byrne S, Corrigan OI (2002) The problem of bias in training data in regression problems in medical decision support. AI Med 24: 51-70.
    • (2002) AI Med , vol.24 , pp. 51-70
    • Mac Namee, B.1    Cunningham, P.2    Byrne, S.3    Corrigan, O.I.4
  • 29
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcome
    • Tu JV (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcome. J Clin Epidemiol 49(11): 1225-1231.
    • (1996) J Clin Epidemiol , vol.49 , Issue.11 , pp. 1225-1231
    • Tu, J.V.1
  • 31
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm
    • Lu Y, Sundararajan N, Saratchandran P (1998) Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Trans Neural Networks 9(2): 308-318.
    • (1998) IEEE Trans Neural Networks , vol.9 , Issue.2 , pp. 308-318
    • Lu, Y.1    Sundararajan, N.2    Saratchandran, P.3
  • 32
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J Roy Stat Soc Ser B (Methodol) 36(2): 111-147.
    • (1974) J Roy Stat Soc Ser B (Methodol) , vol.36 , Issue.2 , pp. 111-147
    • Stone, M.1
  • 33
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • 10th European conference on machine learning 1998, Chemnitz, DE
    • Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. In: Proceedings of ECML-98, 10th European conference on machine learning 1998, Chemnitz, DE pp 137-142.
    • (1998) Proceedings of ECML-98 , pp. 137-142
    • Joachims, T.1
  • 34
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10): 906-914.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 39
    • 84950459261 scopus 로고
    • Tree-structured classification via generalized discriminant analysis
    • Loh WY, Vanichsetakul N (1988) Tree-structured classification via generalized discriminant analysis. J Am Stat Assoc 83(403): 715-725.
    • (1988) J Am Stat Assoc , vol.83 , Issue.403 , pp. 715-725
    • Loh, W.Y.1    Vanichsetakul, N.2
  • 40
    • 16544386025 scopus 로고    scopus 로고
    • Combining loglinear model with classification and regression tree (CART): An application to birth data
    • Fu CY (2004) Combining loglinear model with classification and regression tree (CART): an application to birth data. Comput Stat Data Anal 45(4): 865-874.
    • (2004) Comput Stat Data Anal , vol.45 , Issue.4 , pp. 865-874
    • Fu, C.Y.1
  • 41
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4. 5
    • Quinlan JR (1996) Improved use of continuous attributes in C4. 5. J Artif Intell Res 4: 77-90.
    • (1996) J Artif Intell Res , vol.4 , pp. 77-90
    • Quinlan, J.R.1
  • 44
    • 0001857179 scopus 로고
    • Learning efficient classification procedures and their application to chess end games
    • Michalski RS, Carbonell JG, Mitchell TM (eds), Tioga Publishing Company, Palo Alto
    • Quinlan JR (1983) Learning efficient classification procedures and their application to chess end games. In: Michalski RS, Carbonell JG, Mitchell TM (eds) Machine learning-an artificial intelligence approach. Tioga Publishing Company, Palo Alto, pp 463-482.
    • (1983) Machine learning-an artificial intelligence approach , pp. 463-482
    • Quinlan, J.R.1
  • 45
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J Roy Stat Soc Ser B (Methodol) 36(2): 111-147.
    • (1974) J Roy Stat Soc Ser B (Methodol) , vol.36 , Issue.2 , pp. 111-147
    • Stone, M.1
  • 47
    • 0036686055 scopus 로고    scopus 로고
    • Helicopter transport of pediatric traumapatients in an urban emergency medical services system: A critical analysis
    • EcksteinM, Jantos T, Kelly N, CardilloA (2002)Helicopter transport of pediatric traumapatients in an urban emergency medical services system: a critical analysis. J Trauma 53(2): 340-344.
    • (2002) J Trauma , vol.53 , Issue.2 , pp. 340-344
    • Eckstein, M.1    Jantos, T.2    Kelly, N.3    Cardillo, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.