메뉴 건너뛰기




Volumn 72, Issue 5, 2015, Pages 941-952

Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells

Author keywords

Biofuel cells; Electrocatalysis; Laccase; Oxygen reduction

Indexed keywords

CARBON NANOTUBE; LACCASE; OXYGEN;

EID: 84926677242     PISSN: 1420682X     EISSN: 14209071     Source Type: Journal    
DOI: 10.1007/s00018-014-1828-4     Document Type: Review
Times cited : (147)

References (85)
  • 1
    • 7544227821 scopus 로고    scopus 로고
    • Enzymatic biofuel cells for implantable and microscale devices
    • Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867-4886. doi:10.1021/cr020719k
    • (2004) Chem Rev , vol.104 , pp. 4867-4886
    • Barton, S.C.1    Gallaway, J.2    Atanassov, P.3
  • 2
    • 49049118534 scopus 로고    scopus 로고
    • Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis
    • Cracknell JA, Vincent KA, Armstrong FA (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 108:2439-2461. doi:10.1021/cr0680639
    • (2008) Chem Rev , vol.108 , pp. 2439-2461
    • Cracknell, J.A.1    Vincent, K.A.2    Armstrong, F.A.3
  • 3
    • 77950976409 scopus 로고    scopus 로고
    • Biofuel cells for portable power
    • Gellett W, Kesmez M, Schumacher J et al (2010) Biofuel cells for portable power. Electroanalysis 22:727-731. doi:10.1002/elan. 200980013
    • (2010) Electroanalysis , vol.22 , pp. 727-731
    • Gellett, W.1    Kesmez, M.2    Schumacher, J.3
  • 4
    • 60849107722 scopus 로고    scopus 로고
    • Integrated enzyme-based biofuel cells-A review
    • Willner I, Yan Y-M, Willner B, Tel-Vered R (2009) Integrated enzyme-based biofuel cells-a review. Fuel Cells 9:7-24. doi:10. 1002/fuce.200800115
    • (2009) Fuel Cells , vol.9 , pp. 7-24
    • Willner, I.1    Yan, Y.-M.2    Willner, B.3    Tel-Vered, R.4
  • 5
    • 84884538876 scopus 로고    scopus 로고
    • Implanted biofuel cells operating in vivo-methods, applications and perspectives-feature article
    • Katz E, MacVittie K (2013) Implanted biofuel cells operating in vivo-methods, applications and perspectives-feature article. Energy Environ Sci 6:2791-2803. doi:10.1039/c3ee42126k
    • (2013) Energy Environ Sci , vol.6 , pp. 2791-2803
    • Katz, E.1    Macvittie, K.2
  • 6
    • 84887569786 scopus 로고    scopus 로고
    • Towards glucose biofuel cells implanted in human body for powering artificial organs: Review
    • Cosnier S, Le Goff A, Holzinger M (2014) Towards glucose biofuel cells implanted in human body for powering artificial organs: review. Electrochem Commun 38:19-23. doi:10.1016/j. elecom.2013.09.021
    • (2014) Electrochem Commun , vol.38 , pp. 19-23
    • Cosnier, S.1    Le Goff, A.2    Holzinger, M.3
  • 7
    • 77956420559 scopus 로고    scopus 로고
    • A glucose biofuel cell implanted in rats
    • Cinquin P, Gondran C, Giroud F et al (2010) A glucose biofuel cell implanted in rats. Plos One. doi:10.1371/journal.pone. 0010476 e10476
    • (2010) Plos One
    • Cinquin, P.1    Gondran, C.2    Giroud, F.3
  • 8
    • 84875766734 scopus 로고    scopus 로고
    • Single glucose biofuel cells implanted in rats power electronic devices
    • Zebda A, Cosnier S, Alcaraz J-P et al (2013) Single glucose biofuel cells implanted in rats power electronic devices. Sci Rep 3:1516. doi:10.1038/srep01516
    • (2013) Sci Rep , vol.3 , pp. 1516
    • Zebda, A.1    Cosnier, S.2    Alcaraz, J.-P.3
  • 9
    • 84858052739 scopus 로고    scopus 로고
    • Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures
    • Krishnan S, Armstrong FA (2012) Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures. Chem Sci 3:1015-1023. doi:10. 1039/C2SC01103D
    • (2012) Chem Sci , vol.3 , pp. 1015-1023
    • Krishnan, S.1    Armstrong, F.A.2
  • 10
    • 84865576754 scopus 로고    scopus 로고
    • An innovative powerful and mediatorless H2/O2 biofuel cell based on an outstanding bioanode
    • Ciaccafava A, De Poulpiquet A, Techer V et al (2012) An innovative powerful and mediatorless H2/O2 biofuel cell based on an outstanding bioanode. Electrochem Commun 23:25-28. doi:10.1016/j.elecom.2012.06.035
    • (2012) Electrochem Commun , vol.23 , pp. 25-28
    • Ciaccafava, A.1    De Poulpiquet, A.2    Techer, V.3
  • 11
    • 79251597165 scopus 로고    scopus 로고
    • Towards a rechargeable alcohol biobattery
    • Addo PK, Arechederra RL, Minteer SD (2011) Towards a rechargeable alcohol biobattery. J Power Sources 196:3448-3451. doi:10.1016/j.jpowsour.2010.06.032
    • (2011) J Power Sources , vol.196 , pp. 3448-3451
    • Addo, P.K.1    Arechederra, R.L.2    Minteer, S.D.3
  • 12
    • 84880168760 scopus 로고    scopus 로고
    • Epidermal biofuel cells: Energy harvesting from human perspiration
    • Jia W, Valdés-Ramírez G, Bandodkar AJ et al (2013) Epidermal biofuel cells: energy harvesting from human perspiration. Angew Chem Int Ed 52:7233-7236. doi:10.1002/anie.201302922
    • (2013) Angew Chem Int Ed , vol.52 , pp. 7233-7236
    • Jia, W.1    Valdés-Ramírez, G.2    Bandodkar, A.J.3
  • 13
    • 0035905357 scopus 로고    scopus 로고
    • Oxygen binding, activation, and reduction to water by copper proteins
    • Solomon EI, Chen P, Metz M et al (2001) Oxygen binding, activation, and reduction to water by copper proteins. Angew Chem Int Ed 40:4570-4590. doi:10.1002/1521-3773
    • (2001) Angew Chem Int Ed , vol.40 , pp. 4570-4590
    • Solomon, E.I.1    Chen, P.2    Metz, M.3
  • 14
    • 0041993216 scopus 로고
    • Bioelectrochemistry I. Enzyme utilizing bio-fuel cell studies
    • Yahiro AT, Lee SM, Kimble DO (1964) Bioelectrochemistry I. Enzyme utilizing bio-fuel cell studies. Biochim Biophys Acta 88:375-383
    • (1964) Biochim Biophys Acta , vol.88 , pp. 375-383
    • Yahiro, A.T.1    Lee, S.M.2    Kimble, D.O.3
  • 15
    • 84876565676 scopus 로고    scopus 로고
    • High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix
    • Reuillard B, Le Goff A, Agne's C et al (2013) High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. Phys Chem Chem Phys 15:4892-4896. doi:10.1039/ c3cp50767j
    • (2013) Phys Chem Chem Phys , vol.15 , pp. 4892-4896
    • Reuillard, B.1    Le Goff, A.2    Agne's, C.3
  • 16
    • 84867502600 scopus 로고    scopus 로고
    • Gold nanoparticles as electronic bridges for laccase-based biocathodes
    • Gutiérrez-Sánchez C, Pita M, Vaz-Domínguez C et al (2012) Gold nanoparticles as electronic bridges for laccase-based biocathodes. J Am Chem Soc 134:17212-17220
    • (2012) J Am Chem Soc , vol.134 , pp. 17212-17220
    • Gutiérrez-Sánchez, C.1    Pita, M.2    Vaz-Domínguez, C.3
  • 17
    • 84884327796 scopus 로고    scopus 로고
    • Efficient direct oxygen reduction by laccases attached and oriented on pyrenefunctionalized polypyrrole/carbon nanotube electrodes
    • Lalaoui N, Elouarzaki K, Le Goff A et al (2013) Efficient direct oxygen reduction by laccases attached and oriented on pyrenefunctionalized polypyrrole/carbon nanotube electrodes. Chem Commun 49:9281-9283. doi:10.1039/C3CC44994G
    • (2013) Chem Commun , vol.49 , pp. 9281-9283
    • Lalaoui, N.1    Elouarzaki, K.2    Le Goff, A.3
  • 18
    • 84896885938 scopus 로고    scopus 로고
    • Long-range electron tunneling
    • Winkler JR, Gray HB (2014) Long-range electron tunneling. J Am Chem Soc 136:2930-2939. doi:10.1021/ja500215j
    • (2014) J Am Chem Soc , vol.136 , pp. 2930-2939
    • Winkler, J.R.1    Gray, H.B.2
  • 19
    • 18144407596 scopus 로고    scopus 로고
    • Direct electron transfer between copper-containing proteins and electrodes
    • Shleev S, Tkac J, Christenson A et al (2005) Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron 20:2517-2554. doi:10.1016/j.bios.2004.10. 003
    • (2005) Biosens Bioelectron , vol.20 , pp. 2517-2554
    • Shleev, S.1    Tkac, J.2    Christenson, A.3
  • 20
    • 20444440241 scopus 로고    scopus 로고
    • Direct electron transfer reactions of laccases from different origins on carbon electrodes
    • Shleev S, Jarosz-Wilkolazka A, Khalunina A et al (2005) Direct electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry 67:115-124. doi:10.1016/ j.bioelechem.2005.02.004
    • (2005) Bioelectrochemistry , vol.67 , pp. 115-124
    • Shleev, S.1    Jarosz-Wilkolazka, A.2    Khalunina, A.3
  • 21
    • 84866434367 scopus 로고    scopus 로고
    • Carbon nanotube/ enzyme biofuel cells
    • Holzinger M, Le Goff A, Cosnier S (2012) Carbon nanotube/ enzyme biofuel cells. Electrochim Acta 82:179-190. doi: 10. 1016/j.electacta.2011.12.135
    • (2012) Electrochim Acta , vol.82 , pp. 179-190
    • Holzinger, M.1    Le Goff, A.2    Cosnier, S.3
  • 22
    • 84898012502 scopus 로고    scopus 로고
    • New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells
    • De Poulpiquet A, Ciaccafava A, Lojou E (2014) New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells. Electrochim Acta 126:104-114. doi:10.1016/j.electacta.2013.07.133
    • (2014) Electrochim Acta , vol.126 , pp. 104-114
    • De Poulpiquet, A.1    Ciaccafava, A.2    Lojou, E.3
  • 23
    • 0041365869 scopus 로고    scopus 로고
    • Protein electrochemistry using aligned carbon nanotube arrays
    • Gooding JJ, Wibowo R, Liu et al (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125:9006-9007. doi:10.1021/ja035722f
    • (2003) J Am Chem Soc , vol.125 , pp. 9006-9007
    • Gooding, J.J.1    Liu, W.R.2
  • 24
    • 4544231687 scopus 로고    scopus 로고
    • Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes
    • Wang L, Wang J, Zhou F (2004) Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes. Electroanalysis 16:627-632. doi:10.1002/elan. 200302849
    • (2004) Electroanalysis , vol.16 , pp. 627-632
    • Wang, L.1    Wang, J.2    Zhou, F.3
  • 25
    • 1642538408 scopus 로고    scopus 로고
    • Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode
    • Cai C, Chen J (2004) Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal Biochem 325:285-292. doi:10.1016/j.ab.2003.10.040
    • (2004) Anal Biochem , vol.325 , pp. 285-292
    • Cai, C.1    Chen, J.2
  • 26
    • 84897391015 scopus 로고    scopus 로고
    • Noncovalent functionalization of carbon nanotubes with boronic acids for the wiring of glycosylated redox enzymes in oxygen-reducing biocathodes
    • Reuillard B, Le Goff A, Holzinger M, Cosnier S (2014) Noncovalent functionalization of carbon nanotubes with boronic acids for the wiring of glycosylated redox enzymes in oxygen-reducing biocathodes. J Mater Chem B. doi:10.1039/C3TB21846E
    • J Mater Chem B , vol.2014
    • Reuillard, B.1    Le Goff, A.2    Holzinger, M.3    Cosnier, S.4
  • 27
    • 34547269611 scopus 로고    scopus 로고
    • Hydrogenase-coated carbon nanotubes for efficient H2 oxidation
    • Alonso-Lomillo MA, Rüdiger O, Maroto-Valiente A et al (2007) Hydrogenase-coated carbon nanotubes for efficient H2 oxidation. Nano Lett 7:1603-1608. doi:10.1021/nl070519u
    • (2007) Nano Lett , vol.7 , pp. 1603-1608
    • Alonso-Lomillo, M.A.1    Rüdiger, O.2    Maroto-Valiente, A.3
  • 28
    • 77958111004 scopus 로고    scopus 로고
    • Carbon nanotube thin films: Fabrication, properties, and applications
    • Hu L, Hecht DS, Grüner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110:5790-5844. doi:10.1021/cr9002962
    • (2010) Chem Rev , vol.110 , pp. 5790-5844
    • Hu, L.1    Hecht, D.S.2    Grüner, G.3
  • 29
    • 79952302220 scopus 로고    scopus 로고
    • Multiwalled carbon-nanotube-functionalized microelectrode arrays fabricated by microcontact printing: Platform for studying chemical and electrical neuronal signaling
    • Fuchsberger K, Le Goff A, Gambazzi L et al (2011) Multiwalled carbon-nanotube-functionalized microelectrode arrays fabricated by microcontact printing: platform for studying chemical and electrical neuronal signaling. Small 7:524-530. doi:10.1002/smll. 201001640
    • (2011) Small , vol.7 , pp. 524-530
    • Fuchsberger, K.1    Le Goff, A.2    Gambazzi, L.3
  • 30
    • 17744373271 scopus 로고    scopus 로고
    • Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing
    • Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50:3049-3060. doi:10.1016/j. electacta.2004.08.052
    • (2005) Electrochim Acta , vol.50 , pp. 3049-3060
    • Gooding, J.J.1
  • 31
    • 0036117790 scopus 로고    scopus 로고
    • Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole
    • Hughes M, Chen GZ, Shaffer MSP et al (2002) Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem Mater 14:1610-1613. doi:10.1021/cm010744r
    • (2002) Chem Mater , vol.14 , pp. 1610-1613
    • Hughes, M.1    Chen, G.Z.2    Shaffer, M.S.P.3
  • 32
    • 0030271475 scopus 로고    scopus 로고
    • Carbon nanotube electrode for oxidation of dopamine
    • Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41:121-125. doi:10.1016/0302-4598(96)05078-7
    • (1996) Bioelectrochem Bioenerg , vol.41 , pp. 121-125
    • Britto, P.J.1    Santhanam, K.S.V.2    Ajayan, P.M.3
  • 33
    • 79953902587 scopus 로고    scopus 로고
    • Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells
    • Miyake T, Yoshino S, Yamada T et al (2011) Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells. J Am Chem Soc 133:5129-5134. doi:10.1021/ja111517e
    • (2011) J Am Chem Soc , vol.133 , pp. 5129-5134
    • Miyake, T.1    Yoshino, S.2    Yamada, T.3
  • 34
    • 84867862483 scopus 로고    scopus 로고
    • Mediatorless highpower glucose biofuel cells based on compressed carbon nanotube- enzyme electrodes
    • Zebda A, Gondran C, Le Goff A et al (2011) Mediatorless highpower glucose biofuel cells based on compressed carbon nanotube- enzyme electrodes. Nat Commun 2:370. doi:10.1038/ ncomms1365
    • (2011) Nat Commun , vol.2 , pp. 370
    • Zebda, A.1    Gondran, C.2    Le Goff, A.3
  • 35
    • 84901295482 scopus 로고    scopus 로고
    • Supercapacitor/ biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: Autonomous reloading after high power pulses in neutral buffered glucose solutions
    • Agnes C, Holzinger M, Le Goff A et al (2014) Supercapacitor/ biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions. Energy Environ Sci 7:1884-1888. doi:10.1039/c3ee43986k
    • (2014) Energy Environ Sci , vol.7 , pp. 1884-1888
    • Agnes, C.1    Holzinger, M.2    Le Goff, A.3
  • 36
    • 45649084277 scopus 로고    scopus 로고
    • Multilayer structured carbon nanotubes/poly-L-lysine/laccase composite cathode for glucose/O2 biofuel cell
    • Deng L, Shang L, Wang Y et al (2008) Multilayer structured carbon nanotubes/poly-L-lysine/laccase composite cathode for glucose/O2 biofuel cell. Electrochem Commun 10:1012-1015. doi:10.1016/j.elecom.2008.05.001
    • (2008) Electrochem Commun , vol.10 , pp. 1012-1015
    • Deng, L.1    Shang, L.2    Wang, Y.3
  • 37
    • 33846821739 scopus 로고    scopus 로고
    • Laccase immobilization in redox active layered double hydroxides: A reagentless amperometric biosensor
    • Mousty C, Vieille L, Cosnier S (2007) Laccase immobilization in redox active layered double hydroxides: a reagentless amperometric biosensor. Biosens Bioelectron 22:1733-1738. doi:10. 1016/j.bios.2006.08.020
    • (2007) Biosens Bioelectron , vol.22 , pp. 1733-1738
    • Mousty, C.1    Vieille, L.2    Cosnier, S.3
  • 38
    • 77952525236 scopus 로고    scopus 로고
    • Integrated self-powered microchip biosensor for endogenous biological cyanide
    • Deng L, Chen C, Zhou M et al (2010) Integrated self-powered microchip biosensor for endogenous biological cyanide. Anal Chem 82:4283-4287. doi:10.1021/ac100274s
    • (2010) Anal Chem , vol.82 , pp. 4283-4287
    • Deng, L.1    Chen, C.2    Zhou, M.3
  • 39
    • 77949697274 scopus 로고    scopus 로고
    • High current density air-breathing laccase biocathode
    • Gellett W, Schumacher J, Kesmez M et al (2010) High current density air-breathing laccase biocathode. J Electrochem Soc 157:B557-B562. doi:10.1149/1.3309728
    • (2010) J Electrochem Soc , vol.157 , pp. B557-B562
    • Gellett, W.1    Schumacher, J.2    Kesmez, M.3
  • 40
    • 84879821457 scopus 로고    scopus 로고
    • Membraneless glucose/O2 microfluidic enzymatic biofuel cell using pyrolyzed photoresist film electrodes
    • Jose Gonzalez-Guerrero M, Pablo Esquivel J, Sanchez-Molas D et al (2013) Membraneless glucose/O2 microfluidic enzymatic biofuel cell using pyrolyzed photoresist film electrodes. Lab Chip 13:2972-2979. doi:10.1039/c3lc50319d
    • (2013) Lab Chip , vol.13 , pp. 2972-2979
    • Jose Gonzalez-Guerrero, M.1    Pablo Esquivel, J.2    Sanchez-Molas, D.3
  • 41
    • 69249142174 scopus 로고    scopus 로고
    • Organic functionalisation and characterisation of single-walled carbon nanotubes
    • Singh P, Campidelli S, Giordani S et al (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38:2214-2230. doi:10.1039/ b518111a
    • (2009) Chem Soc Rev , vol.38 , pp. 2214-2230
    • Singh, P.1    Campidelli, S.2    Giordani, S.3
  • 42
    • 0034827512 scopus 로고    scopus 로고
    • Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization
    • Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838-3839. doi:10.1021/ ja010172b
    • (2001) J Am Chem Soc , vol.123 , pp. 3838-3839
    • Chen, R.J.1    Zhang, Y.2    Wang, D.3    Dai, H.4
  • 43
    • 84858683374 scopus 로고    scopus 로고
    • Implanted biofuel cell operating in a living snail
    • Halámková L, Halámek J, Bocharova V et al (2012) Implanted biofuel cell operating in a living snail. J Am Chem Soc 134:5040-5043. doi:10.1021/ja211714w
    • (2012) J Am Chem Soc , vol.134 , pp. 5040-5043
    • Halámková, L.1    Halámek, J.2    Bocharova, V.3
  • 44
    • 77955776882 scopus 로고    scopus 로고
    • High electrocatalytic activity of tethered multicopper oxidase-carbon nanotube conjugates
    • Ramasamy RP, Luckarift HR, Ivnitski DM et al (2010) High electrocatalytic activity of tethered multicopper oxidase-carbon nanotube conjugates. Chem Commun 46:6045-6047. doi:10. 1039/C0CC00911C
    • (2010) Chem Commun , vol.46 , pp. 6045-6047
    • Ramasamy, R.P.1    Luckarift, H.R.2    Ivnitski, D.M.3
  • 45
    • 84862156987 scopus 로고    scopus 로고
    • Design of carbon nanotube-based gas-diffusion cathode for O2 reduction by multicopper oxidases
    • Lau C, Adkins ER, Ramasamy RP et al (2012) Design of carbon nanotube-based gas-diffusion cathode for O2 reduction by multicopper oxidases. Adv Energy Mater 2:162-168. doi:10.1002/ aenm.201100433
    • (2012) Adv Energy Mater , vol.2 , pp. 162-168
    • Lau, C.1    Adkins, E.R.2    Ramasamy, R.P.3
  • 46
    • 84870042797 scopus 로고    scopus 로고
    • Living battery- biofuel cells operating in vivo in clams
    • Szczupak A, Halámek J, Halámková L et al (2012) Living battery- biofuel cells operating in vivo in clams. Energy Environ Sci 5:8891-8895. doi:10.1039/C2EE21626D
    • (2012) Energy Environ Sci , vol.5 , pp. 8891-8895
    • Szczupak, A.1    Halámek, J.2    Halámková, L.3
  • 47
    • 84871307662 scopus 로고    scopus 로고
    • From ''cyborg'' lobsters to a pacemaker powered by implantable biofuel cells
    • MacVittie K, Halamek J, Halámková L et al (2012) From ''cyborg'' lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6:81-86. doi:10.1039/C2EE23209J
    • (2012) Energy Environ Sci , vol.6 , pp. 81-86
    • Macvittie, K.1    Halamek, J.2    Halámková, L.3
  • 48
    • 33750470362 scopus 로고    scopus 로고
    • Direct heterogeneous electron transfer reactions of Trametes hirsuta laccase at bare and thiol-modified gold electrodes
    • Shleev S, Pita M, Yaropolov AI et al (2006) Direct heterogeneous electron transfer reactions of Trametes hirsuta laccase at bare and thiol-modified gold electrodes. Electroanalysis 18:1901-1908. doi:10.1002/elan.200603600
    • (2006) Electroanalysis , vol.18 , pp. 1901-1908
    • Shleev, S.1    Pita, M.2    Yaropolov, A.I.3
  • 49
    • 84856012471 scopus 로고    scopus 로고
    • Electrochemistry, AFM, and PM-IRRA spectroscopy of immobilized hydrogenase: Role of a hydrophobic helix in enzyme orientation for efficient H2 oxidation
    • Ciaccafava A, Infossi P, Ilbert M et al (2012) Electrochemistry, AFM, and PM-IRRA spectroscopy of immobilized hydrogenase: role of a hydrophobic helix in enzyme orientation for efficient H2 oxidation. Angew Chem Int Ed 51:953-956. doi:10.1002/anie. 201107053
    • (2012) Angew Chem Int Ed , vol.51 , pp. 953-956
    • Ciaccafava, A.1    Infossi, P.2    Ilbert, M.3
  • 50
    • 45649083830 scopus 로고    scopus 로고
    • An amperometric immunosensor with a thiolated protein G scaffold
    • Fowler JM, Stuart MC, Wong DKY (2008) An amperometric immunosensor with a thiolated protein G scaffold. Electrochem Commun 10:1020-1023. doi:10.1016/j.elecom.2008.05.002
    • (2008) Electrochem Commun , vol.10 , pp. 1020-1023
    • Fowler, J.M.1    Stuart, M.C.2    Wong, D.K.Y.3
  • 51
    • 84866366891 scopus 로고    scopus 로고
    • Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/ carbon nanotubes composite electrodes. Comparison of three enzyme immobilization methods
    • Gutiérrez-Sánchez C, Jia W, Beyl Y et al (2012) Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/ carbon nanotubes composite electrodes. Comparison of three enzyme immobilization methods. Electrochim Acta 82:218-223. doi:10.1016/j.electacta.2011.12.134
    • (2012) Electrochim Acta , vol.82 , pp. 218-223
    • Gutiérrez-Sánchez, C.1    Jia, W.2    Beyl, Y.3
  • 52
    • 34247538548 scopus 로고    scopus 로고
    • A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface
    • Blanford CF, Heath RS, Armstrong FA (2007) A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface. Chem Commun 17:1710. doi:10.1039/b703114a
    • (2007) Chem Commun , vol.17 , pp. 1710
    • Blanford, C.F.1    Heath, R.S.2    Armstrong, F.A.3
  • 53
    • 55049095938 scopus 로고    scopus 로고
    • Efficient electrocatalytic oxygen reduction by the ''blue'' copper oxidase, laccase, directly attached to chemically modified carbons
    • Blanford CF, Foster CE, Heath RS, Armstrong FA (2008) Efficient electrocatalytic oxygen reduction by the ''blue'' copper oxidase, laccase, directly attached to chemically modified carbons. Faraday Discuss 140:319-335. doi:10.1039/B808939F
    • (2008) Faraday Discuss , vol.140 , pp. 319-335
    • Blanford, C.F.1    Foster, C.E.2    Heath, R.S.3    Armstrong, F.A.4
  • 54
    • 84864597872 scopus 로고    scopus 로고
    • Arylated carbon nanotubes for biobatteries and biofuel cells
    • Stolarczyk K, Lyp D, Zelechowska K et al (2012) Arylated carbon nanotubes for biobatteries and biofuel cells. Electrochim Acta 79:74-81. doi:10.1016/j.electacta.2012.06.050
    • (2012) Electrochim Acta , vol.79 , pp. 74-81
    • Stolarczyk, K.1    Lyp, D.2    Zelechowska, K.3
  • 55
    • 84861903005 scopus 로고    scopus 로고
    • Fully enzymatic mediatorless fuel cell with efficient naphthylated carbon nanotube-laccase composite cathodes
    • Karas̈kiewicz M, Nazaruk E, Želechowska K et al (2012) Fully enzymatic mediatorless fuel cell with efficient naphthylated carbon nanotube-laccase composite cathodes. Electrochem Commun 20:124-127. doi:10.1016/j.elecom.2012.04.011
    • (2012) Electrochem Commun , vol.20 , pp. 124-127
    • Karas̈kiewicz, M.1    Nazaruk, E.2    Želechowska, K.3
  • 56
    • 82955194837 scopus 로고    scopus 로고
    • Anthracenemodified multi-walled carbon nanotubes as direct electron transfer scaffolds for enzymatic oxygen reduction
    • Meredith MT, Minson M, Hickey D et al (2011) Anthracenemodified multi-walled carbon nanotubes as direct electron transfer scaffolds for enzymatic oxygen reduction. ACS Catal 1:1683-1690. doi:10.1021/cs200475q
    • (2011) ACS Catal , vol.1 , pp. 1683-1690
    • Meredith, M.T.1    Minson, M.2    Hickey, D.3
  • 57
    • 84865109292 scopus 로고    scopus 로고
    • Mass transport controlled oxygen reduction at anthraquinone modified 3D-CNT electrodes with immobilized Trametes hirsuta laccase
    • Sosna M, Stoica L, Wright E et al (2012) Mass transport controlled oxygen reduction at anthraquinone modified 3D-CNT electrodes with immobilized Trametes hirsuta laccase. Phys Chem Chem Phys 14:11882. doi:10.1039/c2cp41588g
    • (2012) Phys Chem Chem Phys , vol.14 , pp. 11882
    • Sosna, M.1    Stoica, L.2    Wright, E.3
  • 58
    • 84879887829 scopus 로고    scopus 로고
    • Supramolecular immobilization of laccase on carbon nanotube electrodes functionalized with (methylpyrenylaminomethyl)anthraquinone for direct electron reduction of oxygen
    • Bourourou M, Elouarzaki K, Lalaoui N et al (2013) Supramolecular immobilization of laccase on carbon nanotube electrodes functionalized with (methylpyrenylaminomethyl)anthraquinone for direct electron reduction of oxygen. Chem Eur J 19:9371-9375. doi:10.1002/chem.201301043
    • (2013) Chem Eur J , vol.19 , pp. 9371-9375
    • Bourourou, M.1    Elouarzaki, K.2    Lalaoui, N.3
  • 59
    • 39849087292 scopus 로고    scopus 로고
    • Design of carbon nanotubepolymer frameworks by electropolymerization of SWCNT-pyrrole derivatives
    • Cosnier S, Holzinger M (2008) Design of carbon nanotubepolymer frameworks by electropolymerization of SWCNT-pyrrole derivatives. Electrochim Acta 53:3948-3954. doi:10.1016/j. electacta.2007.10.027
    • (2008) Electrochim Acta , vol.53 , pp. 3948-3954
    • Cosnier, S.1    Holzinger, M.2
  • 60
    • 65549125563 scopus 로고    scopus 로고
    • Hydrophilic carbon nanoparticle-laccase thin film electrode for mediatorless dioxygen reduction: SECM activity mapping and application in zinc-dioxygen battery
    • Szot K, Nogala W, Niedziolka-Jönsson J et al (2009) Hydrophilic carbon nanoparticle-laccase thin film electrode for mediatorless dioxygen reduction: SECM activity mapping and application in zinc-dioxygen battery. Electrochim Acta 54:4620-4625. doi:10. 1016/j.electacta.2009.02.072
    • (2009) Electrochim Acta , vol.54 , pp. 4620-4625
    • Szot, K.1    Nogala, W.2    Niedziolka-Jönsson, J.3
  • 61
    • 84871806180 scopus 로고    scopus 로고
    • Direct electron transfer of Trametes hirsuta laccase adsorbed at unmodified nanoporous gold electrodes
    • Salaj-Kosla U, Pö ller S, Schuhmann W et al (2013) Direct electron transfer of Trametes hirsuta laccase adsorbed at unmodified nanoporous gold electrodes. Bioelectrochemistry 91:15-20. doi:10.1016/j.bioelechem.2012.11.001
    • (2013) Bioelectrochemistry , vol.91 , pp. 15-20
    • Salaj-Kosla, U.1    Pöller, S.2    Schuhmann, W.3
  • 62
    • 0035812365 scopus 로고    scopus 로고
    • A miniature biofuel cell
    • Chen T, Barton SC, Binyamin G et al (2001) A miniature biofuel cell. J Am Chem Soc 123:8630-8631. doi:10.1021/ja0163164
    • (2001) J Am Chem Soc , vol.123 , pp. 8630-8631
    • Chen, T.1    Barton, S.C.2    Binyamin, G.3
  • 63
    • 3142719124 scopus 로고    scopus 로고
    • A four-electron O2- electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 v
    • Soukharev V, Mano N, Heller A (2004) A four-electron O2- electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J Am Chem Soc 126:8368-8369. doi:10. 1021/ja0475510
    • (2004) J Am Chem Soc , vol.126 , pp. 8368-8369
    • Soukharev, V.1    Mano, N.2    Heller, A.3
  • 64
    • 0036310984 scopus 로고    scopus 로고
    • Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces
    • Kiiskinen L-L, Viikari L, Kruus K (2002) Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces. Appl Microbiol Biotechnol 59:198-204. doi:10.1007/s00253-002-1012-x
    • (2002) Appl Microbiol Biotechnol , vol.59 , pp. 198-204
    • Kiiskinen, L.-L.1    Viikari, L.2    Kruus, K.3
  • 65
    • 45649083270 scopus 로고    scopus 로고
    • Electroreduction of O2 at a mediated Melanocarpus albomyces laccase cathode in a physiological buffer
    • Kavanagh P, Jenkins P, Leech D (2008) Electroreduction of O2 at a mediated Melanocarpus albomyces laccase cathode in a physiological buffer. Electrochem Commun 10:970-972. doi:10.1016/ j.elecom.2008.04.025
    • (2008) Electrochem Commun , vol.10 , pp. 970-972
    • Kavanagh, P.1    Jenkins, P.2    Leech, D.3
  • 66
    • 82555175385 scopus 로고    scopus 로고
    • A glucose/oxygen enzymatic fuel cell based on redox polymer and enzyme immobilisation at highlyordered macroporous gold electrodes
    • Boland S, Leech D (2012) A glucose/oxygen enzymatic fuel cell based on redox polymer and enzyme immobilisation at highlyordered macroporous gold electrodes. Analyst 137:113. doi:10. 1039/c1an15537g
    • (2012) Analyst , vol.137 , pp. 113
    • Boland, S.1    Leech, D.2
  • 67
    • 0035969729 scopus 로고    scopus 로고
    • Electroreduction of O2 to water on the ''wired'' laccase cathode
    • Barton SC, Kim H-H, Binyamin G et al (2001) Electroreduction of O2 to water on the ''wired'' laccase cathode. J Phys Chem B 105:11917-11921. doi:10.1021/jp012488b
    • (2001) J Phys Chem B , vol.105 , pp. 11917-11921
    • Barton, S.C.1    Kim, H.-H.2    Binyamin, G.3
  • 68
    • 0036883528 scopus 로고    scopus 로고
    • Electroreduction of O2 to water at 0.6 v (SHE) at pH 7 on the ''wired'' Pleurotus ostreatus laccase cathode
    • Barton SC, Pickard M, Vazquez-Duhalt R, Heller A (2002) Electroreduction of O2 to water at 0.6 V (SHE) at pH 7 on the ''wired'' Pleurotus ostreatus laccase cathode. Biosens Bioelectron 17:1071-1074. doi:10.1016/S0956-5663(02)00100-8
    • (2002) Biosens Bioelectron , vol.17 , pp. 1071-1074
    • Barton, S.C.1    Pickard, M.2    Vazquez-Duhalt, R.3    Heller, A.4
  • 69
    • 77953293555 scopus 로고    scopus 로고
    • Design of a bioelectrocatalytic electrode interface for oxygen reduction in biofuel cells based on a specifically adapted Os-complex containing redox polymer with entrapped Trametes hirsuta laccase
    • Ackermann Y, Guschin DA, Eckhard K et al (2010) Design of a bioelectrocatalytic electrode interface for oxygen reduction in biofuel cells based on a specifically adapted Os-complex containing redox polymer with entrapped Trametes hirsuta laccase. Electrochem Commun 12:640-643. doi:10.1016/j.elecom.2010. 02.019
    • (2010) Electrochem Commun , vol.12 , pp. 640-643
    • Ackermann, Y.1    Guschin, D.A.2    Eckhard, K.3
  • 70
    • 33745231335 scopus 로고    scopus 로고
    • A laccase-glucose oxidase biofuel cell prototype operating in a physiological buffer
    • Barrie're F, Kavanagh P, Leech D (2006) A laccase-glucose oxidase biofuel cell prototype operating in a physiological buffer. Electrochim Acta 51:5187-5192. doi:10.1016/j.electacta.2006. 03.050
    • (2006) Electrochim Acta , vol.51 , pp. 5187-5192
    • Barrie're, F.1    Kavanagh, P.2    Leech, D.3
  • 71
    • 84880298910 scopus 로고    scopus 로고
    • Engineering hybrid nanotube wires for high-power biofuel cells
    • Gao F, Viry L, Maugey M et al (2010) Engineering hybrid nanotube wires for high-power biofuel cells. Nat Commun 1:2. doi:10.1038/ncomms1000
    • (2010) Nat Commun , vol.1 , pp. 2
    • Gao, F.1    Viry, L.2    Maugey, M.3
  • 72
    • 84872193245 scopus 로고    scopus 로고
    • Membraneless glucose/O2 microfluidic biofuel cells using covalently bound enzymes
    • Beneyton T, Wijaya IPM, Salem CB et al (2013) Membraneless glucose/O2 microfluidic biofuel cells using covalently bound enzymes. Chem Commun 49:1094-1096. doi:10.1039/ C2CC37906F
    • (2013) Chem Commun , vol.49 , pp. 1094-1096
    • Beneyton, T.1    Wijaya, I.P.M.2    Salem, C.B.3
  • 73
    • 84865165364 scopus 로고    scopus 로고
    • A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes
    • Jenkins P, Tuurala S, Vaari A et al (2012) A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes. Bioelectrochemistry 87:172-177. doi:10.1016/j. bioelechem.2011.11.011
    • (2012) Bioelectrochemistry , vol.87 , pp. 172-177
    • Jenkins, P.1    Tuurala, S.2    Vaari, A.3
  • 74
    • 77957851524 scopus 로고    scopus 로고
    • Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications
    • Nazaruk E, Sadowska K, Biernat JF et al (2010) Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications. Anal Bioanal Chem 398:1651-1660. doi:10.1007/s00216-010-4012-1
    • (2010) Anal Bioanal Chem , vol.398 , pp. 1651-1660
    • Nazaruk, E.1    Sadowska, K.2    Biernat, J.F.3
  • 75
    • 70349479048 scopus 로고    scopus 로고
    • Use of bioelectrode containing DNA-wrapped single-walled carbon nanotubes for enzyme-based biofuel cell
    • Lee JY, Shin HY, Kang SW et al (2010) Use of bioelectrode containing DNA-wrapped single-walled carbon nanotubes for enzyme-based biofuel cell. J Power Sources 195:750-755. doi:10. 1016/j.jpowsour.2009.08.050
    • (2010) J Power Sources , vol.195 , pp. 750-755
    • Lee, J.Y.1    Shin, H.Y.2    Kang, S.W.3
  • 76
    • 84901831477 scopus 로고    scopus 로고
    • Freestanding redox buckypaper electrodes from multi-wall carbon nanotubes for bioelectrocatalytic oxygen reduction via mediated electron transfer
    • Bourourou M, Elouarzaki K, Holzinger M et al (2014) Freestanding redox buckypaper electrodes from multi-wall carbon nanotubes for bioelectrocatalytic oxygen reduction via mediated electron transfer. Chem Sci. doi:10.1039/C3SC53544D
    • (2014) Chem Sci
    • Bourourou, M.1    Elouarzaki, K.2    Holzinger, M.3
  • 77
    • 53049106079 scopus 로고    scopus 로고
    • Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition
    • Vaz-Dominguez C, Campuzano S, Rüdiger O et al (2008) Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Biosens Bioelectron 24:531-537. doi:10.1016/j.bios.2008.05.002
    • (2008) Biosens Bioelectron , vol.24 , pp. 531-537
    • Vaz-Dominguez, C.1    Campuzano, S.2    Rüdiger, O.3
  • 78
    • 84874306801 scopus 로고    scopus 로고
    • Blood tolerant laccase by directed evolution
    • Mate DM, Gonzalez-Perez D, Falk M et al (2013) Blood tolerant laccase by directed evolution. Chem Biol 20:223-231. doi:10. 1016/j.chembiol.2013.01.001
    • (2013) Chem Biol , vol.20 , pp. 223-231
    • Mate, D.M.1    Gonzalez-Perez, D.2    Falk, M.3
  • 79
    • 84860522955 scopus 로고    scopus 로고
    • Laccase cathode approaches to physiological conditions by local pH acidification
    • Clot S, Gutierrez-Sanchez C, Shleev S et al (2012) Laccase cathode approaches to physiological conditions by local pH acidification. Electrochem Commun 18:37-40. doi:10.1016/j. elecom.2012.01.022
    • (2012) Electrochem Commun , vol.18 , pp. 37-40
    • Clot, S.1    Gutierrez-Sanchez, C.2    Shleev, S.3
  • 80
    • 77955566033 scopus 로고    scopus 로고
    • Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: The role of hydrogen peroxide
    • Scodeller P, Carballo R, Szamocki R et al (2010) Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide. J Am Chem Soc 132:11132-11140. doi:10.1021/ja1020487
    • (2010) J Am Chem Soc , vol.132 , pp. 11132-11140
    • Scodeller, P.1    Carballo, R.2    Szamocki, R.3
  • 81
    • 84886788291 scopus 로고    scopus 로고
    • Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement
    • Milton RD, Giroud F, Thumser AE et al (2013) Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement. Phys Chem Chem Phys 15:19371-19379. doi:10.1039/C3CP53351D
    • (2013) Phys Chem Chem Phys , vol.15 , pp. 19371-19379
    • Milton, R.D.1    Giroud, F.2    Thumser, A.E.3
  • 82
    • 0001760444 scopus 로고    scopus 로고
    • An electrochemical method for making enzyme microsensors. Application to the detection of dopamine and glutamate
    • Cosnier S, Innocent C, Allien L et al (1997) An electrochemical method for making enzyme microsensors. application to the detection of dopamine and glutamate. Anal Chem 69:968-971. doi:10.1021/ac960841h
    • (1997) Anal Chem , vol.69 , pp. 968-971
    • Cosnier, S.1    Innocent, C.2    Allien, L.3
  • 85
    • 84899516241 scopus 로고    scopus 로고
    • Bioelectrochemical oxidation of water
    • Pita M, Mate DM, Gonzalez-Perez D et al (2014) Bioelectrochemical oxidation of water. J Am Chem Soc 136:5892-5895. doi:10.1021/ja502044j
    • (2014) J Am Chem Soc , vol.136 , pp. 5892-5895
    • Pita, M.1    Mate, D.M.2    Gonzalez-Perez, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.