메뉴 건너뛰기




Volumn 1340, Issue 1, 2015, Pages 39-46

Nitric oxide and plant iron homeostasis

Author keywords

Iron homeostasis; Labile iron pool; Nitric oxide; Nitrosyl iron complexes; Plant iron nutrition

Indexed keywords

FERRITIN; FRATAXIN; GLUTATHIONE; HORMONE; IRON; NITRIC OXIDE;

EID: 84926202902     PISSN: 00778923     EISSN: 17496632     Source Type: Journal    
DOI: 10.1111/nyas.12644     Document Type: Article
Times cited : (30)

References (53)
  • 2
    • 0343145729 scopus 로고    scopus 로고
    • Iron transport and storage in plants
    • Briat, J.-F. & S. Lobréaux. 1997. Iron transport and storage in plants. Trends Plant Sci. 2: 187-193.
    • (1997) Trends Plant Sci. , vol.2 , pp. 187-193
    • Briat, J.-F.1    Lobréaux, S.2
  • 3
    • 79955153738 scopus 로고    scopus 로고
    • A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants
    • García, M.J., V. Suárez, F.J. Romera, et al. 2011. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. Plant Physiol. Biochem. 49: 537-544.
    • (2011) Plant Physiol. Biochem. , vol.49 , pp. 537-544
    • García, M.J.1    Suárez, V.2    Romera, F.J.3
  • 4
    • 77957744766 scopus 로고    scopus 로고
    • Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in arabidopsis
    • Chen, W.W., J.L. Yang, C. Qin, et al. 2010. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in arabidopsis. Plant Physiol. 154: 810-819.
    • (2010) Plant Physiol. , vol.154 , pp. 810-819
    • Chen, W.W.1    Yang, J.L.2    Qin, C.3
  • 5
    • 84899962359 scopus 로고    scopus 로고
    • Nitric oxide function in plant biology: a redox cue in deconvolution
    • Yu, M., L. Lamattina, S.H. Spoel, et al. 2014. Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol. 202: 1142-1156.
    • (2014) New Phytol. , vol.202 , pp. 1142-1156
    • Yu, M.1    Lamattina, L.2    Spoel, S.H.3
  • 6
    • 84874724056 scopus 로고    scopus 로고
    • Chloroplast functionality has a positive effect on nitric oxide level in soybean cotyledons
    • Galatro, A., S. Puntarulo, J.J. Guiamet, et al. 2013. Chloroplast functionality has a positive effect on nitric oxide level in soybean cotyledons. Plant Physiol. Biochem. 66: 26-33.
    • (2013) Plant Physiol. Biochem. , vol.66 , pp. 26-33
    • Galatro, A.1    Puntarulo, S.2    Guiamet, J.J.3
  • 7
    • 14844289535 scopus 로고    scopus 로고
    • Nitric oxide emission from tobacco leaves and cell suspensions: Rate limiting factors and evidence for the involvement of mitochondrial electron transport
    • Planchet, E., K.J. Gupta, M. Sonoda, et al. 2005. Nitric oxide emission from tobacco leaves and cell suspensions: Rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J. 41: 732-743.
    • (2005) Plant J , vol.41 , pp. 732-743
    • Planchet, E.1    Gupta, K.J.2    Sonoda, M.3
  • 8
    • 82755162848 scopus 로고    scopus 로고
    • Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide
    • Meiser, J., S. Lingam & P. Bauer. 2011. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide. Plant Physiol. 157: 2154-2166.
    • (2011) Plant Physiol. , vol.157 , pp. 2154-2166
    • Meiser, J.1    Lingam, S.2    Bauer, P.3
  • 9
    • 83555173402 scopus 로고    scopus 로고
    • Glutathione: a key component of the cytoplasmic labile iron pool
    • Hider, R.C. & X.L. Kong. 2011. Glutathione: a key component of the cytoplasmic labile iron pool. Biometals 24: 1179-1187.
    • (2011) Biometals , vol.24 , pp. 1179-1187
    • Hider, R.C.1    Kong, X.L.2
  • 10
    • 0036077504 scopus 로고    scopus 로고
    • Nitric oxide mediates iron-induced ferritin accumulation in arabidopsis
    • Murgia, I., M. Delledonne & C. Soave. 2002. Nitric oxide mediates iron-induced ferritin accumulation in arabidopsis. Plant J. 30: 521-528.
    • (2002) Plant J. , vol.30 , pp. 521-528
    • Murgia, I.1    Delledonne, M.2    Soave, C.3
  • 11
    • 58749093283 scopus 로고    scopus 로고
    • Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient arabidopsis plants
    • Martin, M., M.J.R. Colman, D.F. Gómez-Casati, et al. 2009. Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient arabidopsis plants. FEBS Lett. 583: 542-548.
    • (2009) FEBS Lett , vol.583 , pp. 542-548
    • Martin, M.1    Colman, M.J.R.2    Gómez-Casati, D.F.3
  • 12
    • 84155181022 scopus 로고    scopus 로고
    • Exposure to nitric oxide increases the nitrosyl-iron complexes content in sorghum embryonic axes
    • Simontacchi, M., A. Buet, L. Lamattina, et al. 2012. Exposure to nitric oxide increases the nitrosyl-iron complexes content in sorghum embryonic axes. Plant Sci. 183: 159-166.
    • (2012) Plant Sci. , vol.183 , pp. 159-166
    • Simontacchi, M.1    Buet, A.2    Lamattina, L.3
  • 14
    • 68749092956 scopus 로고    scopus 로고
    • Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots
    • Santi, S. & W. Schmidt. 2009. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol. 183: 1072-1084.
    • (2009) New Phytol , vol.183 , pp. 1072-1084
    • Santi, S.1    Schmidt, W.2
  • 15
    • 84900842616 scopus 로고    scopus 로고
    • Iron in seeds: loading pathways and subcellular localization
    • Grillet, L., S. Mari & W. Schmidt. 2014. Iron in seeds: loading pathways and subcellular localization. Front. Plant Sci. 4: 535.
    • (2014) Front. Plant Sci , vol.4 , pp. 535
    • Grillet, L.1    Mari, S.2    Schmidt, W.3
  • 16
    • 84879719974 scopus 로고    scopus 로고
    • Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula
    • Rodríguez-Celma, J., W.-D. Lin, G.-M. Fu, et al. 2013. Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol. 162: 1473-1485.
    • (2013) Plant Physiol. , vol.162 , pp. 1473-1485
    • Rodríguez-Celma, J.1    Lin, W.-D.2    Fu, G.-M.3
  • 17
    • 84888307631 scopus 로고    scopus 로고
    • Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency
    • Fourcroy, P., P. Sisó-Terraza, D. Sudre, et al. 2014. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol. 201: 155-167.
    • (2014) New Phytol. , vol.201 , pp. 155-167
    • Fourcroy, P.1    Sisó-Terraza, P.2    Sudre, D.3
  • 18
    • 84904803077 scopus 로고    scopus 로고
    • Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition
    • Schmidt, H., C. Günther, M. Weber, et al. 2014. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PLOS One. 9: e102444.
    • (2014) PLOS One , vol.9 , pp. e102444
    • Schmidt, H.1    Günther, C.2    Weber, M.3
  • 19
    • 34248157691 scopus 로고    scopus 로고
    • Mining iron: iron uptake and transport in plants
    • Kim, S.A. & M.L. Guerinot. 2007. Mining iron: iron uptake and transport in plants. FEBS Lett. 581: 2273-2280.
    • (2007) FEBS Lett. , vol.581 , pp. 2273-2280
    • Kim, S.A.1    Guerinot, M.L.2
  • 20
    • 0037781037 scopus 로고    scopus 로고
    • PAA1, a P-Type ATPase of Arabidopsis, functions in copper transport in chloroplasts
    • Shikanai, T., P. Müller-Moulé, Y. Munekage, et al. 2003. PAA1, a P-Type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell. 15: 1333-1346.
    • (2003) Plant Cell , vol.15 , pp. 1333-1346
    • Shikanai, T.1    Müller-Moulé, P.2    Munekage, Y.3
  • 21
  • 22
    • 84893501192 scopus 로고    scopus 로고
    • Ascorbate efflux as a new strategy for iron reduction and transport in plants
    • Grillet, L., L. Ouerdane, P. Flis, et al. 2014. Ascorbate efflux as a new strategy for iron reduction and transport in plants. J. Biol. Chem. 289: 2515-2525.
    • (2014) J. Biol. Chem , vol.289 , pp. 2515-2525
    • Grillet, L.1    Ouerdane, L.2    Flis, P.3
  • 23
    • 0025970277 scopus 로고
    • Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development
    • Lobréaux, S. & J.F. Briat. 1991. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem. J. 274: 601-606.
    • (1991) Biochem. J , vol.274 , pp. 601-606
    • Lobréaux, S.1    Briat, J.F.2
  • 24
    • 79960476863 scopus 로고    scopus 로고
    • New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy
    • Regvar, M., D. Eichert, B. Kaulich, et al. 2011. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy. J. Exp. Bot. 62: 3929-39.
    • (2011) J. Exp. Bot , vol.62 , pp. 3929-3939
    • Regvar, M.1    Eichert, D.2    Kaulich, B.3
  • 25
    • 68849108133 scopus 로고    scopus 로고
    • Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin
    • Wirth, J., S. Poletti, B. Aeschlimann, et al. 2009. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol. J. 7: 631-644.
    • (2009) Plant Biotechnol. J , vol.7 , pp. 631-644
    • Wirth, J.1    Poletti, S.2    Aeschlimann, B.3
  • 26
    • 33751567544 scopus 로고    scopus 로고
    • A nac gene regulating senescence improves grain protein, zinc, and iron content in wheat
    • Uauy, C., A. Distelfeld, T. Fahima, et al. 2006. A nac gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314: 1298-1301.
    • (2006) Science , vol.314 , pp. 1298-1301
    • Uauy, C.1    Distelfeld, A.2    Fahima, T.3
  • 27
    • 70350689531 scopus 로고    scopus 로고
    • Wheat (triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain
    • Waters, B.M., C. Uauy, J. Dubcovsky, et al. 2009. Wheat (triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J. Exp. Bot. 60: 4263-4274.
    • (2009) J. Exp. Bot , vol.60 , pp. 4263-4274
    • Waters, B.M.1    Uauy, C.2    Dubcovsky, J.3
  • 28
    • 80052401834 scopus 로고    scopus 로고
    • Methods of nitric oxide detection in plants: a commentary
    • Mur, L.A.J., J. Mandon, S.M. Cristescu, et al. 2011. Methods of nitric oxide detection in plants: a commentary. Plant Sci. 181: 509-519.
    • (2011) Plant Sci , vol.181 , pp. 509-519
    • Mur, L.A.J.1    Mandon, J.2    Cristescu, S.M.3
  • 29
    • 0035205638 scopus 로고    scopus 로고
    • Nitric oxide: a non-traditional regulator of plant growth
    • Beligni, M.V. & L. Lamattina. 2001. Nitric oxide: a non-traditional regulator of plant growth. Trends Plant Sci. 6: 508-509.
    • (2001) Trends Plant Sci , vol.6 , pp. 508-509
    • Beligni, M.V.1    Lamattina, L.2
  • 30
    • 36348929536 scopus 로고    scopus 로고
    • Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots
    • Graziano, M. & L. Lamattina. 2007. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J. 52: 949-960.
    • (2007) Plant J. , vol.52 , pp. 949-960
    • Graziano, M.1    Lamattina, L.2
  • 31
    • 1042267601 scopus 로고    scopus 로고
    • Apoplastic synthesis of nitric oxide by plant tissues
    • Bethke, P.C., M.R. Badger & R.L. Jones. 2004. Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell. 16: 332-341.
    • (2004) Plant Cell , vol.16 , pp. 332-341
    • Bethke, P.C.1    Badger, M.R.2    Jones, R.L.3
  • 32
    • 16544368902 scopus 로고    scopus 로고
    • Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants
    • Corpas, F.J., J.B. Barroso, A. Carreras, et al. 2004. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol. 136: 2722-2733.
    • (2004) Plant Physiol , vol.136 , pp. 2722-2733
    • Corpas, F.J.1    Barroso, J.B.2    Carreras, A.3
  • 33
    • 33751110470 scopus 로고    scopus 로고
    • Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins
    • Jasid, S., M. Simontacchi, C.G. Bartoli, et al. 2006. Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol. 142: 1246-1255.
    • (2006) Plant Physiol , vol.142 , pp. 1246-1255
    • Jasid, S.1    Simontacchi, M.2    Bartoli, C.G.3
  • 34
    • 41849130604 scopus 로고    scopus 로고
    • Nitric oxide synthesis and signalling in plants
    • Wilson, I.D., S.J. Neill & J.T. Hancock. 2008. Nitric oxide synthesis and signalling in plants. Plant Cell Environ. 31: 622-631.
    • (2008) Plant Cell Environ , vol.31 , pp. 622-631
    • Wilson, I.D.1    Neill, S.J.2    Hancock, J.T.3
  • 35
    • 0034948194 scopus 로고    scopus 로고
    • Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress
    • García-Mata, C. & L. Lamattina. 2001. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol. 126: 1196-1204.
    • (2001) Plant Physiol. , vol.126 , pp. 1196-1204
    • García-Mata, C.1    Lamattina, L.2
  • 36
    • 84859597311 scopus 로고    scopus 로고
    • Nitric oxide influences auxin signaling through s-nitrosylation of the arabidopsis transport inhibitor response 1 auxin receptor
    • Terrile, M.C., R. París, L.I.A. Calderón-Villalobos, et al. 2012. Nitric oxide influences auxin signaling through s-nitrosylation of the arabidopsis transport inhibitor response 1 auxin receptor. Plant J. 70: 492-500.
    • (2012) Plant J. , vol.70 , pp. 492-500
    • Terrile, M.C.1    París, R.2    Calderón-Villalobos, L.I.A.3
  • 37
    • 84877827320 scopus 로고    scopus 로고
    • Nitric oxide as a key component in hormone-regulated processes
    • Simontacchi, M., C. García-Mata, C. Bartoli, et al. 2013. Nitric oxide as a key component in hormone-regulated processes. Plant Cell Rep. 32: 853-866.
    • (2013) Plant Cell Rep , vol.32 , pp. 853-866
    • Simontacchi, M.1    García-Mata, C.2    Bartoli, C.3
  • 38
    • 77956594493 scopus 로고    scopus 로고
    • Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in arabidopsis
    • García, M.J., C. Lucena, F.J. Romera, et al. 2010. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in arabidopsis. J. Exp. Bot. 61: 3885-3899.
    • (2010) J. Exp. Bot , vol.61 , pp. 3885-3899
    • García, M.J.1    Lucena, C.2    Romera, F.J.3
  • 39
  • 40
    • 0036909646 scopus 로고    scopus 로고
    • Nitric oxide improves internal iron availability in plants
    • Graziano, M., M.V. Beligni & L. Lamattina. 2002. Nitric oxide improves internal iron availability in plants. Plant Physiol. 130: 1852-1859.
    • (2002) Plant Physiol , vol.130 , pp. 1852-1859
    • Graziano, M.1    Beligni, M.V.2    Lamattina, L.3
  • 41
    • 11844296696 scopus 로고    scopus 로고
    • Nitric oxide and iron in plants: an emerging and converging story
    • Graziano, M. & L. Lamattina. 2005. Nitric oxide and iron in plants: an emerging and converging story. Trends Plant Sci. 10: 4-8.
    • (2005) Trends Plant Sci , vol.10 , pp. 4-8
    • Graziano, M.1    Lamattina, L.2
  • 42
    • 2642557177 scopus 로고    scopus 로고
    • Endogenous superoxide production and the nitrite/nitrate ratio control the concentration of bioavailable free nitric oxide in leaves
    • Vanin, A.F., D.A. Svistunenko, V.D. Mikoyan, et al. 2004. Endogenous superoxide production and the nitrite/nitrate ratio control the concentration of bioavailable free nitric oxide in leaves. J. Biol. Chem. 279: 24100-24107.
    • (2004) J. Biol. Chem , vol.279 , pp. 24100-24107
    • Vanin, A.F.1    Svistunenko, D.A.2    Mikoyan, V.D.3
  • 43
    • 55249086966 scopus 로고    scopus 로고
    • Exposure to nitric oxide protects against oxidative damage but increases the labile iron pool in sorghum embryonic axes
    • Jasid, S., M. Simontacchi & S. Puntarulo. 2008. Exposure to nitric oxide protects against oxidative damage but increases the labile iron pool in sorghum embryonic axes. J. Exp. Bot. 59: 3953-3962.
    • (2008) J. Exp. Bot , vol.59 , pp. 3953-3962
    • Jasid, S.1    Simontacchi, M.2    Puntarulo, S.3
  • 44
    • 0037108199 scopus 로고    scopus 로고
    • The labile iron pool: characterization, measurement, and participation in cellular processes
    • Kakhlon, O. & Z.I. Cabantchik. 2002. The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic. Biol. Med. 33: 1037-1046.
    • (2002) Free Radic. Biol. Med , vol.33 , pp. 1037-1046
    • Kakhlon, O.1    Cabantchik, Z.I.2
  • 45
    • 27744590575 scopus 로고    scopus 로고
    • Inhibition of the Fenton reaction by nitrogen monoxide
    • Lu, C. & W. Koppenol. 2005. Inhibition of the Fenton reaction by nitrogen monoxide. J. Biol. Inorg. Chem. 10: 732-738.
    • (2005) J. Biol. Inorg. Chem , vol.10 , pp. 732-738
    • Lu, C.1    Koppenol, W.2
  • 46
    • 33646732642 scopus 로고    scopus 로고
    • Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-associated protein 1
    • Watts, R.N., C. Hawkins, P. Ponka, et al. 2006. Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-associated protein 1. Proc. Natl. Acad. Sci. U.S.A. 103: 7670-7675.
    • (2006) Proc. Natl. Acad. Sci. U.S.A , vol.103 , pp. 7670-7675
    • Watts, R.N.1    Hawkins, C.2    Ponka, P.3
  • 47
    • 84870706076 scopus 로고    scopus 로고
    • Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage
    • Urzica, E.I., D. Casero, H. Yamasaki, et al. 2012. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. Plant Cell. 24: 3921-3948.
    • (2012) Plant Cell , vol.24 , pp. 3921-3948
    • Urzica, E.I.1    Casero, D.2    Yamasaki, H.3
  • 48
    • 33747667570 scopus 로고    scopus 로고
    • An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for arabidopsis atfer1 ferritin gene expression
    • Arnaud, N., I. Murgia, J. Boucherez, et al. 2006. An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for arabidopsis atfer1 ferritin gene expression. J. Biol. Chem. 281: 23579-23588.
    • (2006) J. Biol. Chem , vol.281 , pp. 23579-23588
    • Arnaud, N.1    Murgia, I.2    Boucherez, J.3
  • 49
    • 77951995410 scopus 로고    scopus 로고
    • New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants
    • Briat, J.-F., K. Ravet, N. Arnaud, et al. 2010. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann. Bot. 105: 811-822.
    • (2010) Ann. Bot , vol.105 , pp. 811-822
    • Briat, J.-F.1    Ravet, K.2    Arnaud, N.3
  • 50
    • 77955720410 scopus 로고    scopus 로고
    • Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin
    • Wang, B.L., X.Y. Tang, L.Y. Cheng, et al. 2010. Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. New Phytol. 187: 1112-1123.
    • (2010) New Phytol , vol.187 , pp. 1112-1123
    • Wang, B.L.1    Tang, X.Y.2    Cheng, L.Y.3
  • 51
    • 62549153384 scopus 로고    scopus 로고
    • Nitric oxide contributes to cadmium toxicity in arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake
    • Besson-Bard, A., A. Gravot, P. Richaud, et al. 2009. Nitric oxide contributes to cadmium toxicity in arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol. 149: 1302-1315.
    • (2009) Plant Physiol. , vol.149 , pp. 1302-1315
    • Besson-Bard, A.1    Gravot, A.2    Richaud, P.3
  • 52
    • 78249249577 scopus 로고    scopus 로고
    • Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum
    • Xu, J., H. Yin, Y. Li, et al. 2010. Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol. 154: 1319-1334.
    • (2010) Plant Physiol , vol.154 , pp. 1319-1334
    • Xu, J.1    Yin, H.2    Li, Y.3
  • 53
    • 84926172962 scopus 로고    scopus 로고
    • An exogenous source of nitric oxide modulates zinc nutritional status in wheat plants
    • Buet, A., J.I. Moriconi, G.E. Santa-María, et al. 2014. An exogenous source of nitric oxide modulates zinc nutritional status in wheat plants. Plant Physiol. Biochem. 83: 337-345.
    • (2014) Plant Physiol. Biochem. , vol.83 , pp. 337-345
    • Buet, A.1    Moriconi, J.I.2    Santa-María, G.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.