메뉴 건너뛰기




Volumn 12, Issue 2, 2015, Pages 268-288

Using statistical learning algorithms in regional landslide susceptibility zonation with limited landslide field data

Author keywords

Artificial Neural Network (ANN); Landslide Susceptibility Zonation (LSZ); Logistic Regression (LR); Regional scale; Southwest China; Support Vector Machine (SVM)

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; ENVIRONMENTAL FACTOR; GEOLOGICAL MAPPING; HAZARD ASSESSMENT; LANDSLIDE; LEARNING; REGRESSION ANALYSIS; STATISTICAL ANALYSIS; SUPPORT VECTOR MACHINE;

EID: 84925725572     PISSN: 16726316     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11629-014-3134-x     Document Type: Article
Times cited : (21)

References (63)
  • 1
    • 28844477982 scopus 로고    scopus 로고
    • Detecting major terrain parameters relating to mass movements’ occurrence using GIS, remote sensing and statistical correlations, case study Lebanon
    • Abdallah C, Chorowicz J, Bou Kheir R, et al. (2005) Detecting major terrain parameters relating to mass movements’ occurrence using GIS, remote sensing and statistical correlations, case study Lebanon. Remote Sensing of Environment 99: 448–461.
    • (2005) Remote Sensing of Environment , vol.99 , pp. 448-461
    • Abdallah, C.1    Chorowicz, J.2    Bou Kheir, R.3
  • 3
    • 0027009283 scopus 로고
    • Landslide susceptibility evaluation and zonation mapping in mountainous terrain
    • Anbalagan R (1992) Landslide susceptibility evaluation and zonation mapping in mountainous terrain. Engineering Geology 32: 269–277.
    • (1992) Engineering Geology , vol.32 , pp. 269-277
    • Anbalagan, R.1
  • 4
    • 85038603801 scopus 로고    scopus 로고
    • GIS-based and data drive bivariate landslide susceptibility mapping in the Three Gorge Area, China
    • Bai S, Wang J, Lv G, et al. (2007) GIS-based and data drive bivariate landslide susceptibility mapping in the Three Gorge Area, China. Journal of Mountain Science 25(1): 85–92. (In Chinese).
    • (2007) Journal of Mountain Science , vol.25 , Issue.1 , pp. 85-92
    • Bai, S.1    Wang, J.2    Lv, G.3
  • 5
    • 73549087840 scopus 로고    scopus 로고
    • GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China
    • Bai SB, Wang J, Lü G-N, et al. (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 115: 23–31.
    • (2010) Geomorphology , vol.115 , pp. 23-31
    • Bai, S.B.1    Wang, J.2    Lü, G.-N.3
  • 6
    • 79953210805 scopus 로고    scopus 로고
    • Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data
    • Balabin RM and Lomakina EI (2011) Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 136: 1703–1712.
    • (2011) Analyst , vol.136 , pp. 1703-1712
    • Balabin, R.M.1    Lomakina, E.I.2
  • 7
    • 78349310131 scopus 로고    scopus 로고
    • A country-wide spatial assessment of landslide susceptibility in Romania (in press)
    • Bălteanu D, Chendes V, Sima M, et al. (2010) A country-wide spatial assessment of landslide susceptibility in Romania (in press). Geomorphology.
    • (2010) Geomorphology
    • Bălteanu, D.1    Chendes, V.2    Sima, M.3
  • 8
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: fundamentals, computing, design and application
    • Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design and application. Journal of Microbiological Methods 43: 3–31.
    • (2000) Journal of Microbiological Methods , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 11
    • 33749676501 scopus 로고    scopus 로고
    • Logistic regression modeling of rock glacier and glacier distribution: topographic and climatic controls in the semi-arid Andes
    • Brenning A, Trombotto D (2006) Logistic regression modeling of rock glacier and glacier distribution: topographic and climatic controls in the semi-arid Andes. Geomorphology 81: 141–154.
    • (2006) Geomorphology , vol.81 , pp. 141-154
    • Brenning, A.1    Trombotto, D.2
  • 12
    • 84864953124 scopus 로고    scopus 로고
    • Landslide susceptibility assessment in Vietnam using suport vector machines, decision tree, and naïve bayes models
    • Bui DT, Pradhan B, Lofman O, et al. (2012) Landslide susceptibility assessment in Vietnam using suport vector machines, decision tree, and naïve bayes models. Mathematical problems in Engineering: 1–26.
    • (2012) Mathematical problems in Engineering , pp. 1-26
    • Bui, D.T.1    Pradhan, B.2    Lofman, O.3
  • 13
  • 14
    • 55749089724 scopus 로고    scopus 로고
    • Applicability of landslide susceptibility and hazard zoning at different scales
    • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Engineering Geology 102: 164–177.
    • (2008) Engineering Geology , vol.102 , pp. 164-177
    • Cascini, L.1
  • 17
    • 84862817248 scopus 로고    scopus 로고
    • GIS-based support vector machine modelling of earthquake-triggered landslide suscpetibility in the Jianjiang River watershed, China
    • Chong X, Dai FC, Xu XW, et al. (2012) GIS-based support vector machine modelling of earthquake-triggered landslide suscpetibility in the Jianjiang River watershed, China. Geomorphology 145: 70–80.
    • (2012) Geomorphology , vol.145 , pp. 70-80
    • Chong, X.1    Dai, F.C.2    Xu, X.W.3
  • 18
    • 0036887929 scopus 로고    scopus 로고
    • A procedure for landslide susceptibility zonation by the conditional analysis method
    • Clerici A, Perego S, Tellini C, et al. (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48: 349–364.
    • (2002) Geomorphology , vol.48 , pp. 349-364
    • Clerici, A.1    Perego, S.2    Tellini, C.3
  • 19
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 37: 35–46.
    • (1991) Remote Sensing of Environment , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 20
    • 0036538003 scopus 로고    scopus 로고
    • Landslide risk assessment and management: an overview
    • Dai FC, Lee CF, Nagi Y (2002) Landslide risk assessment and management: an overview. Engineering Geology 64: 65–87.
    • (2002) Engineering Geology , vol.64 , pp. 65-87
    • Dai, F.C.1    Lee, C.F.2    Nagi, Y.3
  • 21
    • 0019151130 scopus 로고
    • Regional landslide-susceptibility assessment for wildland management: a matrix approach
    • Coates D, Vitek J, (eds), George Allen and Unwin, London, UK:
    • DeGraff J, Romesburg H (1980) Regional landslide-susceptibility assessment for wildland management: a matrix approach. In: Coates D, Vitek J (Eds.) Thresholds in geomorphology. George Allen and Unwin, London, UK. pp 401–414.
    • (1980) Thresholds in geomorphology , pp. 401-414
    • DeGraff, J.1    Romesburg, H.2
  • 23
    • 2942571051 scopus 로고    scopus 로고
    • Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques
    • Ercanoglu M, Gokceoglu C, Van Asch TWJ (2004) Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques. Natural Hazards 32: 1–23.
    • (2004) Natural Hazards , vol.32 , pp. 1-23
    • Ercanoglu, M.1    Gokceoglu, C.2    Van Asch, T.W.J.3
  • 24
    • 14844322351 scopus 로고    scopus 로고
    • Artificial neural networks applied to landslide susceptibility assessment
    • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66: 327–343.
    • (2005) Geomorphology , vol.66 , pp. 327-343
    • Ermini, L.1    Catani, F.2    Casagli, N.3
  • 25
    • 55849142574 scopus 로고    scopus 로고
    • Guidlines for landslide susceptibility, hazard, risk zoning for land-use planning
    • Fell R, Corominas J, Bonnard C, et al. (2008) Guidlines for landslide susceptibility, hazard, risk zoning for land-use planning. Engineering Geology 102: 99–111.
    • (2008) Engineering Geology , vol.102 , pp. 99-111
    • Fell, R.1    Corominas, J.2    Bonnard, C.3
  • 26
    • 0030953391 scopus 로고    scopus 로고
    • A review of methods for the assessment of prediction errors in the conservation presence/absence methods
    • Fieldings AH, Bell JF (1997) A review of methods for the assessment of prediction errors in the conservation presence/absence methods. Environmental Conservation 24(1): 38–49.
    • (1997) Environmental Conservation , vol.24 , Issue.1 , pp. 38-49
    • Fieldings, A.H.1    Bell, J.F.2
  • 27
    • 75849134535 scopus 로고    scopus 로고
    • Techniques for evaluating the performance of landslide susceptibility models
    • Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Engineering Geology 111: 62–72.
    • (2010) Engineering Geology , vol.111 , pp. 62-72
    • Frattini, P.1    Crosta, G.2    Carrara, A.3
  • 29
    • 0029768950 scopus 로고    scopus 로고
    • Integrated analysis of spatial data for multiple sources: using evidential reasoning and artificial neural network techniques for geological mapping
    • Gong P (1996) Integrated analysis of spatial data for multiple sources: using evidential reasoning and artificial neural network techniques for geological mapping. Photogrammetric Engineering and Remote Sensing 62(5): 513–523.
    • (1996) Photogrammetric Engineering and Remote Sensing , vol.62 , Issue.5 , pp. 513-523
    • Gong, P.1
  • 32
    • 84884909283 scopus 로고    scopus 로고
    • A small-scale landslide susceptibility assessment for the territory of Western Carpathians
    • Holec J, Bednarik M, Sabo M, et al. (2013) A small-scale landslide susceptibility assessment for the territory of Western Carpathians. Natural Hazards 69(1): 1081–1107.
    • (2013) Natural Hazards , vol.69 , Issue.1 , pp. 1081-1107
    • Holec, J.1    Bednarik, M.2    Sabo, M.3
  • 33
    • 0027790233 scopus 로고
    • Statistical models for slope instability classification
    • Jade S, Sarkar S (1993) Statistical models for slope instability classification. Engineering Geology 36: 91–98.
    • (1993) Engineering Geology , vol.36 , pp. 91-98
    • Jade, S.1    Sarkar, S.2
  • 34
    • 33744829751 scopus 로고    scopus 로고
    • A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas
    • Kanungo DP, Arora MK, Starker S, et al. (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology 85(3–4): 347–366.
    • (2006) Engineering Geology , vol.85 , Issue.3-4 , pp. 347-366
    • Kanungo, D.P.1    Arora, M.K.2    Starker, S.3
  • 35
    • 7544221310 scopus 로고    scopus 로고
    • Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China
    • Lan HX, Zhou CH, Wang LJ, et al. (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Engineering Geology 76: 109–128.
    • (2004) Engineering Geology , vol.76 , pp. 109-128
    • Lan, H.X.1    Zhou, C.H.2    Wang, L.J.3
  • 36
    • 0345566244 scopus 로고    scopus 로고
    • Landslide susceptibility analysis using GIS and artificial neural network
    • Lee S, Ryu J, Min K, et al. (2003) Landslide susceptibility analysis using GIS and artificial neural network. Earth Surface Processes and Landforms 28: 1361–1376.
    • (2003) Earth Surface Processes and Landforms , vol.28 , pp. 1361-1376
    • Lee, S.1    Ryu, J.2    Min, K.3
  • 39
    • 48349137749 scopus 로고    scopus 로고
    • (ed), Geology Publishing House, Beijing, China:
    • Ma LF, Ed. (2002) Atlas of China Geology. Geology Publishing House, Beijing, China.
    • (2002) Atlas of China Geology
    • Ma, L.F.1
  • 40
    • 80054680799 scopus 로고    scopus 로고
    • Landslide susceptibility assessment using SVM machine learning algorithm
    • Marjanović M, Kovačević M, Bajat B, et al. (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Engineering Geology 123: 225–234.
    • (2011) Engineering Geology , vol.123 , pp. 225-234
    • Marjanović, M.1    Kovačević, M.2    Bajat, B.3
  • 41
    • 84924293058 scopus 로고    scopus 로고
    • Machine learning feature selection methods for landslide susceptibility mapping
    • Micheletti N, Foresti L, Robert S, et al. (2013) Machine learning feature selection methods for landslide susceptibility mapping. Mathematical Geosciences 46: 33–57.
    • (2013) Mathematical Geosciences , vol.46 , pp. 33-57
    • Micheletti, N.1    Foresti, L.2    Robert, S.3
  • 42
    • 0027091362 scopus 로고
    • Comparing global vegetation maps with the Kappa statistics
    • Monserud RA, Leemans R (1992) Comparing global vegetation maps with the Kappa statistics. Ecological Modelling 62: 275–293.
    • (1992) Ecological Modelling , vol.62 , pp. 275-293
    • Monserud, R.A.1    Leemans, R.2
  • 43
    • 40649084527 scopus 로고    scopus 로고
    • An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps
    • Nefeslioglu HA, Gokcegolu C, Sonmes H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology 97: 171–191.
    • (2008) Engineering Geology , vol.97 , pp. 171-191
    • Nefeslioglu, H.A.1    Gokcegolu, C.2    Sonmes, H.3
  • 44
    • 77950518811 scopus 로고    scopus 로고
    • Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia
    • Pradhan B (2010) Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Advances in Space Research 45: 1244–1256.
    • (2010) Advances in Space Research , vol.45 , pp. 1244-1256
    • Pradhan, B.1
  • 45
    • 84870298875 scopus 로고    scopus 로고
    • A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
    • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences 51: 350–365.
    • (2013) Computers & Geosciences , vol.51 , pp. 350-365
    • Pradhan, B.1
  • 46
    • 70350086738 scopus 로고    scopus 로고
    • Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis using an artificial neural network model
    • Pradhan B, Lee S (2007) Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis using an artificial neural network model. Earth Science Frontiers 14(6): 143–152.
    • (2007) Earth Science Frontiers , vol.14 , Issue.6 , pp. 143-152
    • Pradhan, B.1    Lee, S.2
  • 47
    • 76749088419 scopus 로고    scopus 로고
    • Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling
    • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software 25: 747–759.
    • (2010) Environmental Modelling & Software , vol.25 , pp. 747-759
    • Pradhan, B.1    Lee, S.2
  • 48
    • 77952010906 scopus 로고    scopus 로고
    • A GIS-based backpropagation neural network model and its cross-application and validation for landslide susceptibility analysis
    • Pradhan B, Lee S, Buchroithner MF (2010) A GIS-based backpropagation neural network model and its cross-application and validation for landslide susceptibility analysis. Computers, Environment and Urban Systems (34): 216–235.
    • (2010) Computers, Environment and Urban Systems , pp. 216-235
    • Pradhan, B.1    Lee, S.2    Buchroithner, M.F.3
  • 49
    • 70549106861 scopus 로고    scopus 로고
    • Optimal landslide susceptibility zonation based on multiple forecasts
    • Rossi M, Guzzetti F, Reichenbach P, et al. (2010) Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114(3): 129–142.
    • (2010) Geomorphology , vol.114 , Issue.3 , pp. 129-142
    • Rossi, M.1    Guzzetti, F.2    Reichenbach, P.3
  • 50
    • 17444397755 scopus 로고    scopus 로고
    • An approach for GIS based statistical landslide susceptibility zonation-with a case study in the Himalayas
    • Saha AK, Gupta RP, Starker I, et al. (2005) An approach for GIS based statistical landslide susceptibility zonation-with a case study in the Himalayas. Landslides 2: 61–69.
    • (2005) Landslides , vol.2 , pp. 61-69
    • Saha, A.K.1    Gupta, R.P.2    Starker, I.3
  • 51
    • 79952930723 scopus 로고    scopus 로고
    • Utilization of a least square support vector machine (LSSVM) for slope stability analysis
    • Samui P, Kothari DP (2010) Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Scientia Iranica 18(1): 53–58.
    • (2010) Scientia Iranica , vol.18 , Issue.1 , pp. 53-58
    • Samui, P.1    Kothari, D.P.2
  • 52
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • Tax D, Duin E (1999) Support vector domain description. Pattern Recognition Letter 20: 1191–1199.
    • (1999) Pattern Recognition Letter , vol.20 , pp. 1191-1199
    • Tax, D.1    Duin, E.2
  • 54
    • 28144448823 scopus 로고    scopus 로고
    • GIS-based landslide hazard assessment: an overview
    • Wang H, Liu G, Xu W, et al. (2005) GIS-based landslide hazard assessment: an overview. Progress in Physical Geography 29: 548–567.
    • (2005) Progress in Physical Geography , vol.29 , pp. 548-567
    • Wang, H.1    Liu, G.2    Xu, W.3
  • 55
    • 67649414399 scopus 로고    scopus 로고
    • Landslides susceptibility mapping in Guizhou province based on fuzzy theory
    • Wang WD, Cui CM, Du XG (2009) Landslides susceptibility mapping in Guizhou province based on fuzzy theory. Mining Science and Technology (19): 399–404.
    • (2009) Mining Science and Technology , pp. 399-404
    • Wang, W.D.1    Cui, C.M.2    Du, X.G.3
  • 56
    • 79952246678 scopus 로고    scopus 로고
    • A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey
    • Yalcin A, ReiS S, Aydinoglu AC, et al. (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85: 274–287.
    • (2011) Catena , vol.85 , pp. 274-287
    • Yalcin, A.1    ReiS, S.2    Aydinoglu, A.C.3
  • 57
    • 52949147068 scopus 로고    scopus 로고
    • Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes for Hongkong, China
    • Yao X, Tham LG, Dai FC (2008) Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes for Hongkong, China. Geomorphology 101: 572–582.
    • (2008) Geomorphology , vol.101 , pp. 572-582
    • Yao, X.1    Tham, L.G.2    Dai, F.C.3
  • 58
    • 21044454864 scopus 로고    scopus 로고
    • Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)
    • Yesilnacara E, Topal T (2005) Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology 79: 251–266.
    • (2005) Engineering Geology , vol.79 , pp. 251-266
    • Yesilnacara, E.1    Topal, T.2
  • 59
    • 64949164773 scopus 로고    scopus 로고
    • Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey)
    • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Computers & Geosciences 35: 1125–1138.
    • (2009) Computers & Geosciences , vol.35 , pp. 1125-1138
    • Yilmaz, I.1
  • 60
    • 77955087655 scopus 로고    scopus 로고
    • Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine
    • Yilmaz I (2010a) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Sciences 61: 821–836.
    • (2010) Environmental Earth Sciences , vol.61 , pp. 821-836
    • Yilmaz, I.1
  • 61
    • 77954162270 scopus 로고    scopus 로고
    • The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks
    • Yilmaz I (2010b) The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks, Environmental Earth Science 60(3): 505–519.
    • (2010) Environmental Earth Science , vol.60 , Issue.3 , pp. 505-519
    • Yilmaz, I.1
  • 62
    • 76749145630 scopus 로고    scopus 로고
    • GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey)
    • Yilmaz I, Keskin I (2009) GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey). Bulletin of Engineering Geology and the Environment 68(4): 459–471.
    • (2009) Bulletin of Engineering Geology and the Environment , vol.68 , Issue.4 , pp. 459-471
    • Yilmaz, I.1    Keskin, I.2
  • 63


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.