메뉴 건너뛰기




Volumn 46, Issue 1, 2014, Pages 33-57

Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping

Author keywords

AdaBoost; Adaptive scaling SVM; Landslide susceptibility mapping; Multiscale terrain features; Object based validation; Random forests; Support vector machines (SVM)

Indexed keywords

ADAPTIVE BOOSTING; ARTIFICIAL INTELLIGENCE; DECISION TREES; FEATURE EXTRACTION; LANDSLIDES; LEARNING SYSTEMS; SPATIAL DISTRIBUTION; SPATIAL VARIABLES MEASUREMENT; SUPPORT VECTOR MACHINES;

EID: 84924293058     PISSN: 18748961     EISSN: 18748953     Source Type: Journal    
DOI: 10.1007/s11004-013-9511-0     Document Type: Article
Times cited : (233)

References (82)
  • 2
    • 0001813276 scopus 로고    scopus 로고
    • Landslide hazard assessment: summary review and new perspectives
    • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. B Eng Geol Environ 58:21–44. doi:10.1007/s100640050066
    • (1999) B Eng Geol Environ , vol.58 , pp. 21-44
    • Aleotti, P.1    Chowdhury, R.2
  • 3
    • 0032420126 scopus 로고    scopus 로고
    • Generalised linear modelling of susceptibility to landsliding in Central Appennines, Italy
    • Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in Central Appennines, Italy. Comp Geosci 24:373–385. doi:10.1016/s0098-3004(97)00117-9
    • (1998) Comp Geosci , vol.24 , pp. 373-385
    • Atkinson, P.M.1    Massari, R.2
  • 4
    • 12344286175 scopus 로고    scopus 로고
    • The application of GIS-based logistic regression for landslide susceptibility mapping in Kakuda-Yahiko Mountains, Central Japan
    • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31. doi:10.1016/j.geomorph.2004.06.010
    • (2005) Geomorphology , vol.65 , pp. 15-31
    • Ayalew, L.1    Yamagishi, H.2
  • 5
    • 84855652855 scopus 로고    scopus 로고
    • Support vector machines for landslide susceptibility mapping: the Staffora River Basin Case Study, Italy
    • Ballabio C, Sterlacchini S (2012) Support vector machines for landslide susceptibility mapping: the Staffora River Basin Case Study, Italy. Math Geosci 40:47–70. doi:10.1007/s11004-011-9379-9
    • (2012) Math Geosci , vol.40 , pp. 47-70
    • Ballabio, C.1    Sterlacchini, S.2
  • 7
    • 40849138185 scopus 로고    scopus 로고
    • Evaluation et prédiction des mouvements des grandes phénomènes d’instabilité de pente
    • Bonnard C (2006) Evaluation et prédiction des mouvements des grandes phénomènes d’instabilité de pente. Bull Angew Geol 11:89–100
    • (2006) Bull Angew Geol , vol.11 , pp. 89-100
    • Bonnard, C.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45:5–32. doi:10.1023/A:1010933404324
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 9
    • 30844446670 scopus 로고    scopus 로고
    • Spatial prediction models for landslide hazards: review, comparison and evaluation
    • Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazard Earth Sys 5:853–862. doi:10.5194/nhess-5-853-2005
    • (2005) Nat Hazard Earth Sys , vol.5 , pp. 853-862
    • Brenning, A.1
  • 10
    • 57049102289 scopus 로고    scopus 로고
    • Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection
    • Brenning A (2009) Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection. Remote Sens Environ 113:239–247. doi:10.1016/j.rse.2008.09.005
    • (2009) Remote Sens Environ , vol.113 , pp. 239-247
    • Brenning, A.1
  • 11
    • 84873195831 scopus 로고    scopus 로고
    • Brenning A (2012), Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: the R package sperrorest. In: International geoscience and remote sensing symposium (IGARSS), IEEE, International, pp 5372–5375
    • Brenning A (2012), Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: the R package sperrorest. In: International geoscience and remote sensing symposium (IGARSS), IEEE, International, pp 5372–5375. doi:10.1109/IGARSS.2012.6352393
  • 12
    • 33749676501 scopus 로고    scopus 로고
    • Logistic regression modeling of rock glacier and glacier distribution: topographic and climatic controls in the semi-arid Andes
    • Brenning A, Trombotto D (2006) Logistic regression modeling of rock glacier and glacier distribution: topographic and climatic controls in the semi-arid Andes. Geomorphology 81:141–154. doi:10.1016/j.geomorph.2006.04.003
    • (2006) Geomorphology , vol.81 , pp. 141-154
    • Brenning, A.1    Trombotto, D.2
  • 13
    • 28444483767 scopus 로고    scopus 로고
    • SVM and Kernel Methods Matlab toolbox. Perception Systèmes et Information
    • Rouen, France:
    • Canu S, Grandvalet Y, Guigue V, Rakotomamonjy A (2005) SVM and Kernel Methods Matlab toolbox. Perception Systèmes et Information, INSA de Rouen, Rouen, France
    • (2005) INSA de Rouen
    • Canu, S.1    Grandvalet, Y.2    Guigue, V.3    Rakotomamonjy, A.4
  • 14
    • 0000110716 scopus 로고
    • Multivariate models for landslide hazard evaluation
    • Carrara A (1983) Multivariate models for landslide hazard evaluation. Math Geol 15:403–426. doi:10.1007/BF01031290
    • (1983) Math Geol , vol.15 , pp. 403-426
    • Carrara, A.1
  • 16
    • 33749254096 scopus 로고    scopus 로고
    • An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, pp 161–168
    • Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, pp 161–168. doi:10.1145/1143844.1143865
    • (2006) doi:10.1145/1143844.1143865
    • Caruana, R.1    Niculescu-Mizil, A.2
  • 18
    • 20544467072 scopus 로고    scopus 로고
    • Learning from data: concepts, theory
    • Wiley, New York:
    • Cherkassky V, Mulier F (2007) Learning from data: concepts, theory, and methods. Wiley, New York
    • (2007) and methods
    • Cherkassky, V.1    Mulier, F.2
  • 19
    • 0036134698 scopus 로고    scopus 로고
    • Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong
    • Daia F, Lee C (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228. doi:10.1016/S0169-555X(01)00087-3
    • (2002) Geomorphology , vol.42 , pp. 213-228
    • Daia, F.1    Lee, C.2
  • 20
    • 0029487854 scopus 로고
    • A process-based model for colluvial soil depth and shallow landsliding using digital elevation data
    • Dietrich WE, Reiss R, Hsu ML, Montgomery DR (1995) A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hyrol Process 9:383–400. doi:10.1002/hyp.3360090311
    • (1995) Hyrol Process , vol.9 , pp. 383-400
    • Dietrich, W.E.1    Reiss, R.2    Hsu, M.L.3    Montgomery, D.R.4
  • 22
    • 14844322351 scopus 로고    scopus 로고
    • Artificial neural networks applied to landslide susceptibility assessment
    • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343. doi:10.1016/j.geomorph.2004.09.025
    • (2005) Geomorphology , vol.66 , pp. 327-343
    • Ermini, L.1    Catani, F.2    Casagli, N.3
  • 23
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188
    • (1936) Ann Eugen , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 25
    • 84864277874 scopus 로고    scopus 로고
    • Kernel-based mapping of orographic rainfall enhancement in the Swiss Alps as detected by weather radar
    • Foresti L, Kanevski M, Pozdnoukhov A (2012) Kernel-based mapping of orographic rainfall enhancement in the Swiss Alps as detected by weather radar. IEEE T Geosci Remote 99:1–14. doi:10.1109/TGRS.2011.2179550
    • (2012) IEEE T Geosci Remote , vol.99 , pp. 1-14
    • Foresti, L.1    Kanevski, M.2    Pozdnoukhov, A.3
  • 26
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119–139. doi:10.1006/jcss1997.1504
    • (1997) J Comput Syst Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 27
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232. doi:10.1214/aos/1013203451
    • (2001) Ann Stat , vol.29 , pp. 1189-1232
    • Friedman, J.1
  • 28
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman J (2002) Stochastic gradient boosting. Comput Stat Data An 38:367–378. doi:10.1016/S0167-9473(01)00065-2
    • (2002) Comput Stat Data An , vol.38 , pp. 367-378
    • Friedman, J.1
  • 30
    • 79954992341 scopus 로고    scopus 로고
    • Integrating physical and empirical landslide susceptibility models using generalized additive models
    • Goetz JN, Guthrie RH, Brenning A (2011) Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology 129:376–386. doi:10.1016/j.geomorph.2011.03.001
    • (2011) Geomorphology , vol.129 , pp. 376-386
    • Goetz, J.N.1    Guthrie, R.H.2    Brenning, A.3
  • 31
    • 84899001870 scopus 로고    scopus 로고
    • Adaptive scaling for feature selection in SVMs
    • Grandvalet Y, Canu S (2003) Adaptive scaling for feature selection in SVMs. Adv Neur In 15:553–560
    • (2003) Adv Neur In , vol.15 , pp. 553-560
    • Grandvalet, Y.1    Canu, S.2
  • 32
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 34
    • 0343069785 scopus 로고    scopus 로고
    • Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy
    • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. doi:10.1016/S0169-555X(99)00078-1
    • (1999) Geomorphology , vol.31 , pp. 181-216
    • Guzzetti, F.1    Carrara, A.2    Cardinali, M.3    Reichenbach, P.4
  • 36
    • 61349115460 scopus 로고    scopus 로고
    • Landslide volumes and landslide mobilization rates in Umbria, Central Italy
    • Guzzetti F, Adrizzone F, Cardinali M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, Central Italy. Earth Planet Sci Lett 279:222–229. doi:10.1016/j.epsl.2009.01.005
    • (2009) Earth Planet Sci Lett , vol.279 , pp. 222-229
    • Guzzetti, F.1    Adrizzone, F.2    Cardinali, M.3    Rossi, M.4    Valigi, D.5
  • 38
    • 82855161254 scopus 로고    scopus 로고
    • Multiscale analysis of geomorphological and geological features in high resolution digital elevation models using the wavelet transform
    • Kalbermatten M, Van De Ville D, Turberg P, Tuia D, Joost S (2011) Multiscale analysis of geomorphological and geological features in high resolution digital elevation models using the wavelet transform. Geomorphology 138:352–363. doi:10.1016/j.geomorph.2011.09.023
    • (2011) Geomorphology , vol.138 , pp. 352-363
    • Kalbermatten, M.1    Van De Ville, D.2    Turberg, P.3    Tuia, D.4    Joost, S.5
  • 40
    • 0016302182 scopus 로고
    • A computer program for linear logistic regression analysis
    • Lee E (1974) A computer program for linear logistic regression analysis. Comput Prog Biomed 4:80–92. doi:10.1016/0010-468X(74)90011-7
    • (1974) Comput Prog Biomed , vol.4 , pp. 80-92
    • Lee, E.1
  • 41
    • 1642505737 scopus 로고    scopus 로고
    • Determination and application of the weights for landslide susceptibility mapping using and artificial neural network
    • Lee L, Ryu J, Won J, Park H (2004) Determination and application of the weights for landslide susceptibility mapping using and artificial neural network. Eng Geol 71:289–302. doi:10.1016/S0013-7952(03)00142-X
    • (2004) Eng Geol , vol.71 , pp. 289-302
    • Lee, L.1    Ryu, J.2    Won, J.3    Park, H.4
  • 42
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2(3):18–22
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 43
    • 79960225335 scopus 로고    scopus 로고
    • Functional soil-landscape modelling to estimate slope stability in a steep Andean mountain forest region
    • Liess M, Glaser B, Huwe B (2011) Functional soil-landscape modelling to estimate slope stability in a steep Andean mountain forest region. Geomorphology 132:287–299. doi:10.1016/j.geomorph.2011.05.015
    • (2011) Geomorphology , vol.132 , pp. 287-299
    • Liess, M.1    Glaser, B.2    Huwe, B.3
  • 44
    • 34548160247 scopus 로고    scopus 로고
    • A note on Platt’s probabilistic outputs for support vector machines
    • Lin HT, Lin CJ, Weng RC (2007) A note on Platt’s probabilistic outputs for support vector machines. Mach Learn 68:267–276. doi:10.1007/s10994-0075018-6
    • (2007) Mach Learn , vol.68 , pp. 267-276
    • Lin, H.T.1    Lin, C.J.2    Weng, R.C.3
  • 45
    • 75749130396 scopus 로고    scopus 로고
    • A comparison of predictive methods in modelling the distribution of periglacial landforms in Finnish Lapland
    • Marmion M, Hjort J, Thuiller W, Luoto M (2008) A comparison of predictive methods in modelling the distribution of periglacial landforms in Finnish Lapland. Earth Surf Proc Land 33:2241–2254. doi:10.1002/esp.1695
    • (2008) Earth Surf Proc Land , vol.33 , pp. 2241-2254
    • Marmion, M.1    Hjort, J.2    Thuiller, W.3    Luoto, M.4
  • 46
    • 60249099922 scopus 로고    scopus 로고
    • Statistical consensus methods for improving predictive geomorphology maps
    • Marmion M, Hjort J, Thuiller W, Luoto M (2009) Statistical consensus methods for improving predictive geomorphology maps. Comp Geosci 35:615–625. doi:10.1016/j.cageo.2008.02.024
    • (2009) Comp Geosci , vol.35 , pp. 615-625
    • Marmion, M.1    Hjort, J.2    Thuiller, W.3    Luoto, M.4
  • 47
    • 38149109867 scopus 로고    scopus 로고
    • Artificial neural networks and cluster analysis in landslide susceptibility zonation
    • Melchiorre C, Matteucci M, Azzoni A, Zanchi A (2008) Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94:379–400. doi:10.1016/j.geomorph.2006.10.035
    • (2008) Geomorphology , vol.94 , pp. 379-400
    • Melchiorre, C.1    Matteucci, M.2    Azzoni, A.3    Zanchi, A.4
  • 48
    • 33846662159 scopus 로고    scopus 로고
    • Support vector machines with applications
    • Moguerza JM, Munoz A (2006) Support vector machines with applications. Stat Sci 21:322–336. doi:10.1214/088342306000000493
    • (2006) Stat Sci , vol.21 , pp. 322-336
    • Moguerza, J.M.1    Munoz, A.2
  • 49
    • 0028667098 scopus 로고
    • A physically based model for the topographic control on shallow landsliding
    • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171. doi:10.1029/93WR02979
    • (1994) Water Resour Res , vol.30 , pp. 1153-1171
    • Montgomery, D.R.1    Dietrich, W.E.2
  • 50
    • 0029729420 scopus 로고    scopus 로고
    • Western Préalpes Médianes Romandes: timing and structure. A review
    • Mosar J, Stampfli GM, Girod F (1996) Western Préalpes Médianes Romandes: timing and structure. A review. Eclogae Geol Helv 89:389–425
    • (1996) Eclogae Geol Helv , vol.89 , pp. 389-425
    • Mosar, J.1    Stampfli, G.M.2    Girod, F.3
  • 51
    • 0036327340 scopus 로고    scopus 로고
    • Pixel- and site-based calibration and validation methods for evaluating supervised classification of remotely sensed data
    • Muchoney D, Strahler A (2002) Pixel- and site-based calibration and validation methods for evaluating supervised classification of remotely sensed data. Remote Sens Environ 81:290–299. doi:10.1016/S0034-4257(02)00006-8
    • (2002) Remote Sens Environ , vol.81 , pp. 290-299
    • Muchoney, D.1    Strahler, A.2
  • 52
    • 3042680664 scopus 로고    scopus 로고
    • Use of backpropagation neural network for landslide monitoring: a case study in the higher himalaya
    • Neaupane K, Achet S (2004) Use of backpropagation neural network for landslide monitoring: a case study in the higher himalaya. Eng Geol 74:213–226. doi:10.1016/j.enggeo.2004.03.010
    • (2004) Eng Geol , vol.74 , pp. 213-226
    • Neaupane, K.1    Achet, S.2
  • 53
    • 40649084527 scopus 로고    scopus 로고
    • An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for preparation of landslide susceptibility maps
    • Nefeslioglu H, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for preparation of landslide susceptibility maps. Eng Geol 97:171–191. doi:10.1016/j.enggeo.2008.01.004
    • (2008) Eng Geol , vol.97 , pp. 171-191
    • Nefeslioglu, H.1    Gokceoglu, C.2    Sonmez, H.3
  • 54
    • 82255174148 scopus 로고    scopus 로고
    • Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures predictors from random forest variable importance measures
    • Nicodemus KK (2011) Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures predictors from random forest variable importance measures. Brief Bioinform 12:369–373. doi:10.1093/bib/bbr016
    • (2011) Brief Bioinform , vol.12 , pp. 369-373
    • Nicodemus, K.K.1
  • 55
    • 84927568191 scopus 로고
    • Carte des instabilitiés de terrain du Canton de Vaud
    • Swiss Federal Institute of Technology, Lausanne:
    • Noverraz F (1994) Carte des instabilitiés de terrain du Canton de Vaud. Rapport conclusif et explicatif des travaux de levé de cartes. Swiss Federal Institute of Technology, Lausanne
    • (1994) Rapport conclusif et explicatif des travaux de levé de cartes
    • Noverraz, F.1
  • 56
    • 40849140037 scopus 로고
    • Mapping methodology of landslide and rockfall in Switzerland
    • Alpine landslide practical seminar, Milano:
    • Noverraz F, Bonnard C (1990) Mapping methodology of landslide and rockfall in Switzerland. In: ALPS 90, Alpine landslide practical seminar, Milano, pp 43–53
    • (1990) ALPS , vol.90 , pp. 43-53
    • Noverraz, F.1    Bonnard, C.2
  • 57
    • 0038016577 scopus 로고    scopus 로고
    • Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA
    • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343. doi:10.1016/S0013-7952(03)00069-3
    • (2003) Eng Geol , vol.69 , pp. 331-343
    • Ohlmacher, G.C.1    Davis, J.C.2
  • 58
    • 33646553013 scopus 로고    scopus 로고
    • Fast distributed outlier detection in mixed-attribute data sets
    • Otey ME, Ghoting A, Parthasarathy S (2006) Fast distributed outlier detection in mixed-attribute data sets. Data Min Knowl Disc 12:203–228. doi:10.1007/s10618-005-0014-6
    • (2006) Data Min Knowl Disc , vol.12 , pp. 203-228
    • Otey, M.E.1    Ghoting, A.2    Parthasarathy, S.3
  • 59
    • 37249083412 scopus 로고    scopus 로고
    • Quantitative assessment of landslide susceptibility using high-resolution remote sensing data and a generalized additive model
    • Park NW, Chi KH (2008) Quantitative assessment of landslide susceptibility using high-resolution remote sensing data and a generalized additive model. Int J Remote Sens 29:247–264. doi:10.1080/01431160701227661
    • (2008) Int J Remote Sens , vol.29 , pp. 247-264
    • Park, N.W.1    Chi, K.H.2
  • 60
    • 85067715699 scopus 로고    scopus 로고
    • Cartes Indicatives de Danger des Mouvements de Versants du Canton de Vaud. Faculty of Geosciences and Environment
    • Pedrazzini A, Surace I, Horton P, Loye A (2008) Cartes Indicatives de Danger des Mouvements de Versants du Canton de Vaud. Faculty of Geosciences and Environment, University of Lausanne
    • (2008) University of Lausanne
    • Pedrazzini, A.1    Surace, I.2    Horton, P.3    Loye, A.4
  • 61
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Smola AJ, Bartlett P, Schölkopf B, Schuurmans D, (eds), MIT Press, Cambridge:
    • Platt J (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Smola AJ, Bartlett P, Schölkopf B, Schuurmans D (eds) Advances in large margin classifiers. MIT Press, Cambridge, pp 61–74
    • (1999) Advances in large margin classifiers , pp. 61-74
    • Platt, J.1
  • 62
    • 76749088419 scopus 로고    scopus 로고
    • Landslide susceptibility assessment and factor effect analysis: back-propagation artificial neural networks and their comparison with frequency ration and bivariate logistic regression modelling
    • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: back-propagation artificial neural networks and their comparison with frequency ration and bivariate logistic regression modelling. Environ Modell Softw 25:747–759. doi:10.1016/j.envsoft.2009.10.016
    • (2010) Environ Modell Softw , vol.25 , pp. 747-759
    • Pradhan, B.1    Lee, S.2
  • 64
    • 84879312293 scopus 로고    scopus 로고
    • Generalized Boosted Regression Models
    • Ridgeway G (2013) gmb: Generalized Boosted Regression Models. R package version 2.1. http://CRAN.R-project.org/package=gbm. Accessed 17 January 2013
    • R package version , vol.2 , pp. 1
    • Ridgeway, G.1
  • 66
    • 7044271021 scopus 로고    scopus 로고
    • Slope instability recognition, analysis, and zonation
    • Turner AK, Schuster RL, (eds), National Academy Press, Washington D.C.:
    • Soeters R, van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslide: investigations and mitigation. National Academy Press, Washington D.C., pp 129–177
    • (1996) Landslide: investigations and mitigation , pp. 129-177
    • Soeters, R.1    van Westen, C.J.2
  • 67
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: illustrations, sources and a solution
    • Strobl C, Boulestiex AL, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform 8:25. doi:10.1186/1471-2105-8-25
    • (2007) BMC Bioinform , vol.8 , pp. 25
    • Strobl, C.1    Boulestiex, A.L.2    Zeileis, A.3    Hothorn, T.4
  • 68
    • 79960743609 scopus 로고    scopus 로고
    • Object-oriented mapping of landslides using random forests
    • Stumpf A, Kerle N (2011) Object-oriented mapping of landslides using random forests. Remote Sens Environ 115:2564–2577. doi:10.1016/j.rse.2011.05.013
    • (2011) Remote Sens Environ , vol.115 , pp. 2564-2577
    • Stumpf, A.1    Kerle, N.2
  • 69
    • 0942302183 scopus 로고    scopus 로고
    • Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey
    • Suzen M, Doyuran V (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321. doi:10.1016/S0013-7952(03)00143-1
    • (2004) Eng Geol , vol.71 , pp. 303-321
    • Suzen, M.1    Doyuran, V.2
  • 70
    • 17444402905 scopus 로고    scopus 로고
    • Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity
    • Tacher L, Bonnard C, Laloui L, Parriaux A (2005) Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity. Landslides 2:3–14. doi:10.1007/s10346-004-0038-9
    • (2005) Landslides , vol.2 , pp. 3-14
    • Tacher, L.1    Bonnard, C.2    Laloui, L.3    Parriaux, A.4
  • 71
    • 85067736145 scopus 로고    scopus 로고
    • Tarboton DG (2005) Terrain analysis using digital elevation models (TauDEM). Accessed 21 November 2012
    • Tarboton DG (2005) Terrain analysis using digital elevation models (TauDEM). http://hydrology.usu.edu. Accessed 21 November 2012
  • 73
    • 85067716341 scopus 로고
    • Geology of Switzerland, a guide book. Part A, an outline of the geology of Switzerland
    • Trumpy R (1980) Geology of Switzerland, a guide book. Part A, an outline of the geology of Switzerland. Earth Sci Rev 17:3
    • (1980) Earth Sci Rev , vol.17 , pp. 3
    • Trumpy, R.1
  • 74
    • 41849107105 scopus 로고    scopus 로고
    • Glissement de la Chenolette (Bex-Les Plans, VD)
    • Tullen R (2000) Glissement de la Chenolette (Bex-Les Plans, VD). Bull Géol Appl 5:39–45
    • (2000) Bull Géol Appl , vol.5 , pp. 39-45
    • Tullen, R.1
  • 76
    • 0001660290 scopus 로고
    • Landslide hazard zonation: a review of principles and practice. Commission of Landslide of IAEG
    • Natural Hazards, Paris:
    • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Commission of Landslide of IAEG, UNESCO, Natural Hazards, Paris
    • (1984) UNESCO
    • Varnes, D.J.1
  • 77
    • 33744789370 scopus 로고    scopus 로고
    • Landslide hazard and risk zonation: why is it still so difficult?
    • van Westen CJ, van Asch T, Soeters R (2005) Landslide hazard and risk zonation: why is it still so difficult? B Eng Geol Environ 65:167–184. doi:10.1007/s10064-005-0023-0
    • (2005) B Eng Geol Environ , vol.65 , pp. 167-184
    • van Westen, C.J.1    van Asch, T.2    Soeters, R.3
  • 78
    • 55849117350 scopus 로고    scopus 로고
    • Spatial data for landslide susceptibility, hazards and vulnerability assessment: an overview
    • van Westen CJ, Castellanos Abella EA (2008) Spatial data for landslide susceptibility, hazards and vulnerability assessment: an overview. Eng Geol 102:112–131. doi:10.1016/j.enggeo.2008.03.010
    • (2008) Eng Geol , vol.102 , pp. 112-131
    • van Westen, C.J.1    Castellanos Abella, E.A.2
  • 79
    • 52949147068 scopus 로고    scopus 로고
    • Landslide susceptibility mapping based on support vector machines: a case study on natural slopes of Hong Kong, China
    • Yao X, Tham L, Dai F (2008) Landslide susceptibility mapping based on support vector machines: a case study on natural slopes of Hong Kong, China. Geomorphology 101:572–582. doi:10.1016/j.geomorph.2008.02.011
    • (2008) Geomorphology , vol.101 , pp. 572-582
    • Yao, X.1    Tham, L.2    Dai, F.3
  • 80
    • 21044454864 scopus 로고    scopus 로고
    • Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)
    • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79:251–266. doi:10.1016/j.enggeo.2005.02.002
    • (2005) Eng Geol , vol.79 , pp. 251-266
    • Yesilnacar, E.1    Topal, T.2
  • 81
    • 77955087655 scopus 로고    scopus 로고
    • Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine
    • Yilmaz I (2010a) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61:821–836. doi:10.1007/s12665-009-0394-9
    • (2010) Environ Earth Sci , vol.61 , pp. 821-836
    • Yilmaz, I.1
  • 82
    • 77954162270 scopus 로고    scopus 로고
    • The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks
    • Yilmaz I (2010b) The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environ Earth Sci 60:505–519. doi:10.1007/s12665-009-0191-5
    • (2010) Environ Earth Sci , vol.60 , pp. 505-519
    • Yilmaz, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.