-
1
-
-
61649097567
-
Conductive single-walled carbon nanotube substrates modulate neuronal growth
-
Malarkey EB, Fisher KA, Bekyarova E, et al. Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett. 2009;9(1):264-268.
-
(2009)
Nano Lett.
, vol.9
, Issue.1
, pp. 264-268
-
-
Malarkey, E.B.1
Fisher, K.A.2
Bekyarova, E.3
-
2
-
-
0025319137
-
Nerve branching is induced and oriented by a small applied electric field
-
McCaig CD. Nerve branching is induced and oriented by a small applied electric field. J Cell Sci. 1990;95:605-615.
-
(1990)
J Cell Sci.
, vol.95
, pp. 605-615
-
-
McCaig, C.D.1
-
3
-
-
0026653245
-
The effects of melanocortins and electrical fields on neuronal growth
-
McCaig CD, Stewart R. The effects of melanocortins and electrical fields on neuronal growth. Exp Neurol. 1992; 116(2):172-179.
-
(1992)
Exp Neurol.
, vol.116
, Issue.2
, pp. 172-179
-
-
McCaig, C.D.1
Stewart, R.2
-
4
-
-
0032949709
-
Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels
-
Borgens RB. Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels. Neuroscience. 1999;91(1):251-264.
-
(1999)
Neuroscience.
, vol.91
, Issue.1
, pp. 251-264
-
-
Borgens, R.B.1
-
5
-
-
0030793289
-
Stimulation of neurite outgrowth using an electrically conducting polymer
-
Schmidt CE, Shastri VR, Vacanti JP, et al. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci U S A. 1997;94(17):8948-8953.
-
(1997)
Proc Natl Acad Sci U S A.
, vol.94
, Issue.17
, pp. 8948-8953
-
-
Schmidt, C.E.1
Shastri, V.R.2
Vacanti, J.P.3
-
6
-
-
34547584454
-
Conducting polymers in biomedical engineering
-
Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci. 2007;32(8-9):876-921.
-
(2007)
Prog Polym Sci.
, vol.32
, Issue.8-9
, pp. 876-921
-
-
Guimard, N.K.1
Gomez, N.2
Schmidt, C.E.3
-
7
-
-
33845721714
-
Electrically conductive biodegradable polymer composite for nerve regeneration: Electricity-stimulated neurite outgrowth and axon regeneration
-
Zhang Z, Rouabhia M, Wang ZX, et al. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. Artif Organs. 2007;31(1):13-22.
-
(2007)
Artif Organs.
, vol.31
, Issue.1
, pp. 13-22
-
-
Zhang, Z.1
Rouabhia, M.2
Wang, Z.X.3
-
8
-
-
10944271206
-
Preparation and characterization of porous conducting poly(DL-Lactide) composite membranes
-
Wang Y, Wen DJ. Preparation and characterization of porous conducting poly(DL-Lactide) composite membranes. J Mem Sci. 2005;246(2):193-201.
-
(2005)
J Mem Sci.
, vol.246
, Issue.2
, pp. 193-201
-
-
Wang, Y.1
Wen, D.J.2
-
9
-
-
0035988719
-
Tissue reaction to polypyrrole-coated polyester fabrics: An in vivo study in rats
-
Jiang XP, Marois Y, Traoré A, et al. Tissue reaction to polypyrrole-coated polyester fabrics: an in vivo study in rats. Tissue Eng. 2002;8(4):635-647.
-
(2002)
Tissue Eng.
, vol.8
, Issue.4
, pp. 635-647
-
-
Jiang, X.P.1
Marois, Y.2
Traoré, A.3
-
10
-
-
0348015844
-
A biodegradable electrical bioconductor made of polypyrrole nanoparticle/Poly (d,1-lactide) composite: A preliminary in vitro biostability study
-
Wang ZK, Roberge C, Wan Y, et al. A biodegradable electrical bioconductor made of polypyrrole nanoparticle/Poly (d,1-lactide) composite: a preliminary in vitro biostability study. J Biomed Mater Res A. 2003;66(4):738-747.
-
(2003)
J Biomed Mater Res A.
, vol.66
, Issue.4
, pp. 738-747
-
-
Wang, Z.K.1
Roberge, C.2
Wan, Y.3
-
11
-
-
67650438901
-
Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications
-
Lee JY, Bashur CA, Goldstein AS, et al. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials. 2009;30(26): 4325-4335.
-
(2009)
Biomaterials.
, vol.30
, Issue.26
, pp. 4325-4335
-
-
Lee, J.Y.1
Bashur, C.A.2
Goldstein, A.S.3
-
12
-
-
1342344094
-
Evaluation of biocompatibility of polypyrrole in vitro and in vivo
-
Wang X, Gu X, Yuan C, et al. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J Biomed Mater Res A. 2004;68(3):411-422.
-
(2004)
J Biomed Mater Res A.
, vol.68
, Issue.3
, pp. 411-422
-
-
Wang, X.1
Gu, X.2
Yuan, C.3
-
13
-
-
28044458771
-
Porous and electrically conductive polypyrrole-poly(vinyl alcohol) composite and its applications as a biomaterial
-
Li Y, Neoh KG, Cen L, et al. Porous and electrically conductive polypyrrole-poly(vinyl alcohol) composite and its applications as a biomaterial. Langmuir. 2005;21(23): 10702-10709.
-
(2005)
Langmuir.
, vol.21
, Issue.23
, pp. 10702-10709
-
-
Li, Y.1
Neoh, K.G.2
Cen, L.3
-
14
-
-
70349150202
-
Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF-coated electrodes
-
Alison J, Brianna C, Gordon G, et al. Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF-coated electrodes. J Biomed Mater Res A. 2009;91(1):241-250.
-
(2009)
J Biomed Mater Res A.
, vol.91
, Issue.1
, pp. 241-250
-
-
Alison, J.1
Brianna, C.2
Gordon, G.3
-
15
-
-
1442263150
-
Adhesion and proliferation of cells on new polymers modified biomaterials
-
Lakard S, Herlem G, Propper A, et al. Adhesion and proliferation of cells on new polymers modified biomaterials. Bioelectrochemistry. 2004;62(1):19-27.
-
(2004)
Bioelectrochemistry.
, vol.62
, Issue.1
, pp. 19-27
-
-
Lakard, S.1
Herlem, G.2
Propper, A.3
-
16
-
-
14644444497
-
Culture of neural cells on polymers coated surfaces for biosensor applications
-
Lakard S, Herlem G, Valles-Villareal N, et al. Culture of neural cells on polymers coated surfaces for biosensor applications. Biosens Bioelectron. 2005;20(10): 1946-1954.
-
(2005)
Biosens Bioelectron.
, vol.20
, Issue.10
, pp. 1946-1954
-
-
Lakard, S.1
Herlem, G.2
Valles-Villareal, N.3
-
17
-
-
38849143163
-
Electric field effects on human spinal injury: Is there a basis in the in vitro studies?
-
Robinson KR, Cormie P. Electric field effects on human spinal injury: is there a basis in the in vitro studies? Dev Neurobiol. 2008;68(2):274-280.
-
(2008)
Dev Neurobiol.
, vol.68
, Issue.2
, pp. 274-280
-
-
Robinson, K.R.1
Cormie, P.2
-
18
-
-
0344519690
-
Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers
-
Luu YK, Kim K, Hsiao BS, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release. 2003;89(2):341-349.
-
(2003)
J Control Release.
, vol.89
, Issue.2
, pp. 341-349
-
-
Luu, Y.K.1
Kim, K.2
Hsiao, B.S.3
-
19
-
-
0037400540
-
A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering
-
Yoshimoto H, Shin YM, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24(12): 2077-2082.
-
(2003)
Biomaterials.
, vol.24
, Issue.12
, pp. 2077-2082
-
-
Yoshimoto, H.1
Shin, Y.M.2
Terai, H.3
-
20
-
-
0041803100
-
Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) nonwoven membranes via post-draw treatments
-
Zong XH, Ran S, Fang D, et al. Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) nonwoven membranes via post-draw treatments. Polymer. 2003;44(17):4959-4967.
-
(2003)
Polymer.
, vol.44
, Issue.17
, pp. 4959-4967
-
-
Zong, X.H.1
Ran, S.2
Fang, D.3
-
21
-
-
79959701784
-
Fabrication of high conductivity dual multi-porous poly (L-lactic acid)/polypyrrole composite micro/nanofibrous scaffold
-
Yu QZ, Dai ZW, Lan P. Fabrication of high conductivity dual multi-porous poly (L-lactic acid)/polypyrrole composite micro/nanofibrous scaffold. Mater Sci and Eng: Part B. 2011;176(12):913-920.
-
(2011)
Mater Sci and Eng: Part B.
, vol.176
, Issue.12
, pp. 913-920
-
-
Yu, Q.Z.1
Dai, Z.W.2
Lan, P.3
-
22
-
-
34247279846
-
Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity
-
Leach JB, Brown XQ, Jacot JG, et al. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J Neural Eng. 2007;4(2):26-34.
-
(2007)
J Neural Eng.
, vol.4
, Issue.2
, pp. 26-34
-
-
Leach, J.B.1
Brown, X.Q.2
Jacot, J.G.3
|