-
1
-
-
84877608573
-
Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets
-
Galves, A., Löcherbach, E.: Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets. J. Stat. Phys. 151, 896–921 (2013)
-
(2013)
J. Stat. Phys.
, vol.151
, pp. 896-921
-
-
Galves, A.1
Löcherbach, E.2
-
2
-
-
0004017463
-
-
Cambridge University Press, Cambridge:
-
Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)
-
(2002)
Spiking Neuron Models. Single Neurons, Populations, Plasticity
-
-
Gerstner, W.1
Kistler, W.M.2
-
3
-
-
0000816682
-
Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models
-
Davis, M.H.A.: Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc. Ser. B 46, 353–388 (1984)
-
(1984)
J. R. Stat. Soc. Ser. B
, vol.46
, pp. 353-388
-
-
Davis, M.H.A.1
-
4
-
-
78650962578
-
Fluid limit theorems for stochastic hybrid systems with application to neuron models
-
Pakdaman, K., Thieullen, M., Wainrib, G.: Fluid limit theorems for stochastic hybrid systems with application to neuron models. Adv. Appl. Probab. 42(3), 761–794 (2010)
-
(2010)
Adv. Appl. Probab.
, vol.42
, Issue.3
, pp. 761-794
-
-
Pakdaman, K.1
Thieullen, M.2
Wainrib, G.3
-
5
-
-
84864832573
-
Limit theorems for infinite-dimensional piecewise deterministic markov processes. Applications to stochastic excitable membrane models
-
Riedler, M.G., Thieullen, M., Wainrib, G.: Limit theorems for infinite-dimensional piecewise deterministic markov processes. Applications to stochastic excitable membrane models. Electron. J. Probab. 17(55), 1–48 (2012)
-
(2012)
Electron. J. Probab.
, vol.17
, Issue.55
, pp. 1-48
-
-
Riedler, M.G.1
Thieullen, M.2
Wainrib, G.3
-
6
-
-
77958032223
-
A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs
-
Faugeras, O., Touboul, J., Cessac, B.: A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Front. Comput. Neurosci. 3, 1–28 (2009)
-
(2009)
Front. Comput. Neurosci.
, vol.3
, pp. 1-28
-
-
Faugeras, O.1
Touboul, J.2
Cessac, B.3
-
7
-
-
0001961264
-
Mean-field equations, bifurcation map and route to chaos in discrete time neural networks
-
Cessac, B., Doyon, B., Quoy, M., Samuelides, M.: Mean-field equations, bifurcation map and route to chaos in discrete time neural networks. Physica D 74(12), 24–44 (1994)
-
(1994)
Physica D
, vol.74
, Issue.12
, pp. 24-44
-
-
Cessac, B.1
Doyon, B.2
Quoy, M.3
Samuelides, M.4
-
8
-
-
0036016201
-
Large deviations and mean-field theory for asymmetric random recurrent neural networks
-
Moynot, Olivier, Samuelides, Manuel: Large deviations and mean-field theory for asymmetric random recurrent neural networks. Probab. Theory Relat. Fields 123(1), 41–75 (2002)
-
(2002)
Probab. Theory Relat. Fields
, vol.123
, Issue.1
, pp. 41-75
-
-
Moynot, O.1
Samuelides, M.2
-
9
-
-
84925465614
-
-
E.: Global Solvability of a Networked Integrate-and-Fire Model of McKean–Vlasov Type
-
Delarue, F., Inlis, J., Rubenthaler, S., Tanré, E.: Global Solvability of a Networked Integrate-and-Fire Model of McKean–Vlasov Type. (2012)
-
(2012)
Tanré
-
-
Delarue, F.1
Inlis, J.2
Rubenthaler, S.3
-
10
-
-
84899512305
-
Propagation of chaos in neural fields
-
Touboul, J.: Propagation of chaos in neural fields. Ann. Appl. Probab. 24(3), 1298–1328 (2014)
-
(2014)
Ann. Appl. Probab.
, vol.24
, Issue.3
, pp. 1298-1328
-
-
Touboul, J.1
-
11
-
-
0000467039
-
Tightness of probabilities on C([0,1]) and D([0,1])
-
Mitoma, I.: Tightness of probabilities on C([0,1];$$S_p$$Sp) and D([0,1];$$S_p$$Sp). Ann. Probab. 11, 989–999 (1983)
-
(1983)
Ann. Probab.
, vol.11
, pp. 989-999
-
-
Mitoma, I.1
-
12
-
-
0003540683
-
-
Lecture Notes in Mathematics, 1501, Springer, Berlin:
-
De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamic Limits. Lecture Notes in Mathematics, vol. 1501. Springer, Berlin (1991)
-
(1991)
Mathematical Methods for Hydrodynamic Limits
-
-
De Masi, A.1
Presutti, E.2
|