-
4
-
-
0000648716
-
Deterministic limit of the stochastic model of chemicalreactions with diffusion
-
MR-0569433
-
L. Arnold and M. Theodosopulu. Deterministic limit of the stochastic model of chemicalreactions with diffusion. Adv. Appl. Prob., 12(2):367-379, 1980. MR-0569433
-
(1980)
Adv. Appl. Prob
, vol.12
, Issue.2
, pp. 367-379
-
-
Arnold, L.1
Theodosopulu, M.2
-
5
-
-
52949122900
-
The emergence of the deterministic Hodgkin-Huxley equations as a limit fromthe underlying stochastic ion-channel mechanism
-
MR-2434172
-
T. D. Austin. The emergence of the deterministic Hodgkin-Huxley equations as a limit fromthe underlying stochastic ion-channel mechanism. Ann. Appl. Prob., 18(4):1279-1325, 2008. MR-2434172
-
(2008)
Ann. Appl. Prob
, vol.18
, Issue.4
, pp. 1279-1325
-
-
Austin, T.D.1
-
7
-
-
0001659504
-
Comparison of stochastic and deterministic models of a linear chemical reactionwith diffusion
-
MR-1127711
-
D. Blount. Comparison of stochastic and deterministic models of a linear chemical reactionwith diffusion. Ann. Probab., 19(4):1440-1462, 1991. MR-1127711
-
(1991)
Ann. Probab
, vol.19
, Issue.4
, pp. 1440-1462
-
-
Blount, D.1
-
8
-
-
0011627657
-
Law of large numbers in the supremum norm for a chemical reaction with diffusion
-
MR-1143396
-
D. Blount. Law of large numbers in the supremum norm for a chemical reaction with diffusion. Ann. Appl. Probab., 2(1):131-141, 1992. MR-1143396
-
(1992)
Ann. Appl. Probab
, vol.2
, Issue.1
, pp. 131-141
-
-
Blount, D.1
-
9
-
-
38249002934
-
Limit theorems for a sequence of nonlinear reaction-diffusion systems
-
MR-1208868
-
D. Blount. Limit theorems for a sequence of nonlinear reaction-diffusion systems. Stoch. Proc. Appl., 45(2):193-207, 1993. MR-1208868
-
(1993)
Stoch. Proc. Appl
, vol.45
, Issue.2
, pp. 193-207
-
-
Blount, D.1
-
10
-
-
0001564970
-
Density-dependent limits for a nonlinear reaction-diffusion model
-
MR-1331215
-
D. Blount. Density-dependent limits for a nonlinear reaction-diffusion model. Ann. Probab.,22(4):2040-2070, 1994. MR-1331215
-
(1994)
Ann. Probab.
, vol.22
, Issue.4
, pp. 2040-2070
-
-
Blount, D.1
-
11
-
-
0030500154
-
Diffusion limits for a nonlinear density dependent space-time population model
-
MR-1404523
-
D. Blount. Diffusion limits for a nonlinear density dependent space-time population model. Ann. Probab., 24(2):639-659, 1996. MR-1404523
-
(1996)
Ann. Probab
, vol.24
, Issue.2
, pp. 639-659
-
-
Blount, D.1
-
12
-
-
73949151166
-
Stochastic neural field theory and the system-size expansion
-
MR-2578680
-
P. C. Bressloff. Stochastic neural field theory and the system-size expansion. SIAMJ. Appl. Math., 70:1488-1521, 2009. MR-2578680
-
(2009)
SIAMJ. Appl. Math
, vol.70
, pp. 1488-1521
-
-
Bressloff, P.C.1
-
13
-
-
84864861891
-
Exact modelling of neuronal membranes including spatiotemportalevolution
-
MR-2855804
-
E. Buckwar and M. G. Riedler. Exact modelling of neuronal membranes including spatiotemportalevolution. J. Math. Bio., 63(6):1053-1091, 2011. MR-2855804
-
(2011)
J. Math. Bio
, vol.63
, Issue.6
, pp. 1053-1091
-
-
Buckwar, E.1
Riedler, M.G.2
-
16
-
-
0000816682
-
Piecewise-deterministic Markov processes: A general class of non-diffusionstochastic models (with discussion)
-
Ser. B, MR-0790622
-
M. H. A. Davis. Piecewise-deterministic Markov processes: a general class of non-diffusionstochastic models (with discussion). J. R. Stat. Soc., Ser. B, 46:353-388, 1984. MR-0790622
-
(1984)
J. R. Stat. Soc.
, vol.46
, pp. 353-388
-
-
Davis, M.H.A.1
-
20
-
-
0037215762
-
2+ dynamics
-
2+ dynamics. Biophys. J., 84:42-56, 2002.
-
(2002)
Biophys. J.
, vol.84
, pp. 42-56
-
-
Falcke, M.1
-
21
-
-
61449097941
-
Models of cardiac cell
-
F. H. Fenton and E. M. Cherry. Models of cardiac cell. Scholarpedia, 8(3):1868, 2008.
-
(2008)
Scholarpedia
, vol.8
, Issue.3
, pp. 1868
-
-
Fenton, F.H.1
Cherry, E.M.2
-
23
-
-
35649001607
-
A quantitative description of membrane current and itsapplication to conduction and excitation in nerve
-
A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and itsapplication to conduction and excitation in nerve. J. Physiol., 117:500-544, 1952.
-
(1952)
J. Physiol.
, vol.117
, pp. 500-544
-
-
Hodgkin, A.L.1
Huxley, A.F.2
-
25
-
-
50249179593
-
Diffusion approximation of nuclear space-valued stochastic differentialequations driven by Poisson random measures
-
MR-1336880
-
G. Kallianpur and J. Xiong. Diffusion approximation of nuclear space-valued stochastic differentialequations driven by Poisson random measures. Ann. Appl. Prob., 5(2):493-517,1995. MR-1336880
-
(1995)
Ann. Appl. Prob
, vol.5
, Issue.2
, pp. 493-517
-
-
Kallianpur, G.1
Xiong, J.2
-
27
-
-
0001133640
-
Law of large numbers and central limit theorem for linear chemical reactionswith diffusion
-
MR-0815964
-
P. Kotelenez. Law of large numbers and central limit theorem for linear chemical reactionswith diffusion. Ann. Prob., 14(1):173-193, 1986. MR-0815964
-
(1986)
Ann. Prob
, vol.14
, Issue.1
, pp. 173-193
-
-
Kotelenez, P.1
-
28
-
-
0022717204
-
Linear parabolic differential equations as limits of space-time jump Markovprocesses
-
MR-0837340
-
P. Kotelenez. Linear parabolic differential equations as limits of space-time jump Markovprocesses. J. Math. Anal. Appl., 116(1):42-76, 1986. MR-0837340
-
(1986)
J. Math. Anal. Appl
, vol.116
, Issue.1
, pp. 42-76
-
-
Kotelenez, P.1
-
29
-
-
0041188784
-
Fluctuations near homogeneous states of chemical reactions with diffusion
-
MR-0889941
-
P. Kotelenez. Fluctuations near homogeneous states of chemical reactions with diffusion. Adv. Appl. Probab., 19(2):352-370, 1987. MR-0889941
-
(1987)
Adv. Appl. Probab
, vol.19
, Issue.2
, pp. 352-370
-
-
Kotelenez, P.1
-
30
-
-
0002759556
-
High density limit theorems for nonlinear chemical reactions with diffusion
-
MR-0940864
-
P. Kotelenez. High density limit theorems for nonlinear chemical reactions with diffusion. Prob. Th. Rel. Fields, 78(1):11-37, 1988. MR-0940864
-
(1988)
Prob. Th. Rel. Fields
, vol.78
, Issue.1
, pp. 11-37
-
-
Kotelenez, P.1
-
31
-
-
0002232633
-
Solutions of ordinary differential equations as limits of pure jump Markov processes
-
MR-0254917
-
T. G. Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.J. Appl. Prob., 7:49-58, 1970. MR-0254917
-
(1970)
J. Appl. Prob.
, vol.7
, pp. 49-58
-
-
Kurtz, T.G.1
-
32
-
-
0001249058
-
Limit theorems for a sequence of jump Markov processes approximating ordinarydifferential equations
-
MR-0287609
-
T. G. Kurtz. Limit theorems for a sequence of jump Markov processes approximating ordinarydifferential equations. J. Appl. Prob., 8:344-356, 1971. MR-0287609
-
(1971)
J. Appl. Prob.
, vol.8
, pp. 344-356
-
-
Kurtz, T.G.1
-
34
-
-
77952331714
-
Fast stochastic simulation of biochemical reactionsystems by alternative formulations of the chemical langevin equation
-
B. Mélykúti, K. Burrage, and K. C. Zygalakis. Fast stochastic simulation of biochemical reactionsystems by alternative formulations of the chemical langevin equation. J. Chem. Phys.,132:164109, 2010.
-
(2010)
J. Chem. Phys.
, vol.132
, pp. 164109
-
-
Mélykúti, B.1
Burrage, K.2
Zygalakis, K.C.3
-
35
-
-
0003680586
-
-
deGruyter, Berlin, MR-0688144
-
M Métivier. Semimartingales. deGruyter, Berlin, 1982. MR-0688144
-
(1982)
Semimartingales
-
-
Métivier, M.1
-
36
-
-
82655182668
-
Convergence faible et principe d'invariance pour des martingales à valeursdans des espaces de sobolev
-
MR-0771893
-
M. Métivier. Convergence faible et principe d'invariance pour des martingales à valeursdans des espaces de sobolev. Ann. Inst. Henri Poincaré, Sec. B, 20(4):329-348, 1984. MR-0771893
-
(1984)
Ann. Inst. Henri Poincaré, Sec. B
, vol.20
, Issue.4
, pp. 329-348
-
-
Métivier, M.1
-
37
-
-
78650962578
-
Fluid limit theorems for stochastic hybrid systemswith application to neuron models
-
MR-2779558
-
K. Pakdaman, M. Thieullen, and G. Wainrib. Fluid limit theorems for stochastic hybrid systemswith application to neuron models. Adv. in Appl. Probab., 42(3):761-794, 2010. MR-2779558
-
(2010)
Adv. in Appl. Probab
, vol.42
, Issue.3
, pp. 761-794
-
-
Pakdaman, K.1
Thieullen, M.2
Wainrib, G.3
-
38
-
-
34250943125
-
An optimal Poincaré inequality for convex domains
-
MR-0117419
-
L. E. Payne and H. F. Weinberger. An optimal Poincaré inequality for convex domains. Arch. Rat. Mech. Anal., 5:286-292, 1960. MR-0117419
-
(1960)
Arch. Rat. Mech. Anal.
, vol.5
, pp. 286-292
-
-
Payne, L.E.1
Weinberger, H.F.2
-
41
-
-
84864864062
-
Approximation of stochastic hybrid systems
-
In Oberwolfach Reports, ReportNr. 40: Mini-workshop: EuropeanMathematical Society
-
M. G. Riedler. Approximation of stochastic hybrid systems. In Oberwolfach Reports, ReportNr. 40: Mini-workshop: Dynamics of Stochastic Systems and their Approximation. EuropeanMathematical Society, 2011.
-
(2011)
Dynamics of Stochastic Systems and their Approximation
-
-
Riedler, M.G.1
-
45
-
-
0001377524
-
Optimal control of piecewise deterministic Markov processes
-
MR-0800243
-
D. Vermes. Optimal control of piecewise deterministic Markov processes. Stochastics,14:165-207, 1985. MR-0800243
-
(1985)
Stochastics
, vol.14
, pp. 165-207
-
-
Vermes, D.1
|