-
1
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723
-
(1974)
IEEE Trans Autom Control
, vol.19
, pp. 716-723
-
-
Akaike, H.1
-
5
-
-
84870712724
-
Shi T (2011) Selection of rank and basis functions in the spatial random effects model
-
American Statistical Association, Alexandria:
-
Bradley JR, Cressie N, Shi T (2011) Selection of rank and basis functions in the spatial random effects model. In: Proceedings of the 2011 joint statistical meetings, American Statistical Association, Alexandria, pp 3393–3406
-
Proceedings of the 2011 joint statistical meetings
, pp. 3393-3406
-
-
Bradley, J.R.1
Cressie, N.2
-
6
-
-
85066570046
-
Shi T (2012) Local spatial-predictor selection
-
American Statistical Association, Alexandria:
-
Bradley JR, Cressie N, Shi T (2012) Local spatial-predictor selection. In: Proceedings of the 2012 joint statistical meetings, American Statistical Association, Alexandria, pp 3098–3110
-
Proceedings of the 2012 joint statistical meetings
, pp. 3098-3110
-
-
Bradley, J.R.1
Cressie, N.2
-
8
-
-
33747076106
-
AIRS: improving weather forecasting and providing new data on greenhouse gases
-
Chahine M, Pagano T, Aumann H, Atlas R, Barnet C, Blaisdell J, Chen L, Divakarla M, Fetzer E, Goldberg M, Gautier C, Granger S, Hannon S, Irion FW, Kakar R, Kalnay E, Lambrigtsen B, Lee S, Marshall JL, McMillian WW, McMillin L, Olsen ET, Revercomb H, Rosenkranz P, Smith WL, Staelin D, Strow LL, Susskind J, Tobin D, Wolf W, Zhou L (2006) AIRS: improving weather forecasting and providing new data on greenhouse gases. Bull Am Meteorol Soc 87:911–926
-
(2006)
Bull Am Meteorol Soc
, vol.87
, pp. 911-926
-
-
Chahine, M.1
Pagano, T.2
Aumann, H.3
Atlas, R.4
Barnet, C.5
Blaisdell, J.6
Chen, L.7
Divakarla, M.8
Fetzer, E.9
Goldberg, M.10
Gautier, C.11
Granger, S.12
Hannon, S.13
Irion, F.W.14
Kakar, R.15
Kalnay, E.16
Lambrigtsen, B.17
Lee, S.18
Marshall, J.L.19
McMillian, W.W.20
McMillin, L.21
Olsen, E.T.22
Revercomb, H.23
Rosenkranz, P.24
Smith, W.L.25
Staelin, D.26
Strow, L.L.27
Susskind, J.28
Tobin, D.29
Wolf, W.30
Zhou, L.31
more..
-
9
-
-
84858276254
-
Geostatistical model averaging based on conditional information criteria
-
Chen CS, Huang HC (2011a) Geostatistical model averaging based on conditional information criteria. Environ Ecol Stat 19:23–35
-
(2011)
Environ Ecol Stat
, vol.19
, pp. 23-35
-
-
Chen, C.S.1
Huang, H.C.2
-
10
-
-
77956281310
-
An improved Cp criterion for spline smoothing
-
Chen C-S, Huang H-C (2011b) An improved Cp criterion for spline smoothing. J Stat Plan Inference 141:445–452
-
(2011)
J Stat Plan Inference
, vol.141
, pp. 445-452
-
-
Chen, C.-S.1
Huang, H.-C.2
-
12
-
-
0025683716
-
The origins of kriging
-
Cressie N (1990) The origins of kriging. Math Geol 22:239–252
-
(1990)
Math Geol
, vol.22
, pp. 239-252
-
-
Cressie, N.1
-
15
-
-
37849041594
-
Fixed rank kriging for very large spatial data sets
-
Cressie N, Johannesson G (2008) Fixed rank kriging for very large spatial data sets. J Royal Stat Soc Ser B 70:209–226
-
(2008)
J Royal Stat Soc Ser B
, vol.70
, pp. 209-226
-
-
Cressie, N.1
Johannesson, G.2
-
16
-
-
77955119363
-
Using temporal variability to improve spatial mapping with application to satellite data
-
Cressie N, Shi T, Kang EL (2010) Using temporal variability to improve spatial mapping with application to satellite data. Can J Stat 38:271–289
-
(2010)
Can J Stat
, vol.38
, pp. 271-289
-
-
Cressie, N.1
Shi, T.2
Kang, E.L.3
-
18
-
-
0041958932
-
Ideal spatial adaptation by wavelet shrinkage
-
Donoho D, Johnstone I (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455
-
(1994)
Biometrika
, vol.81
, pp. 425-455
-
-
Donoho, D.1
Johnstone, I.2
-
19
-
-
84950461478
-
Estimating the error rate of a prediction rule: improvement on cross-validation
-
Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78:316–331
-
(1983)
J Am Stat Assoc
, vol.78
, pp. 316-331
-
-
Efron, B.1
-
20
-
-
80053264999
-
How biased is the apparent error rate of a prediction rule?
-
Efron B (1986) How biased is the apparent error rate of a prediction rule? J Am Stat Assoc 81:461–470
-
(1986)
J Am Stat Assoc
, vol.81
, pp. 461-470
-
-
Efron, B.1
-
21
-
-
4944239996
-
The estimation of prediction error: covariance penalties and cross-validation
-
Efron B (2004) The estimation of prediction error: covariance penalties and cross-validation. J Am Stat Assoc 99:619–642
-
(2004)
J Am Stat Assoc
, vol.99
, pp. 619-642
-
-
Efron, B.1
-
22
-
-
85067764208
-
-
Finley AO, Banerjee S, Carlin B (2012) . , retrieved Jan 2013
-
Finley AO, Banerjee S, Carlin B (2012) Package ‘spBayes’. http://cran.r-project.org/web/packages/spBayes/spBayes.pdf, retrieved Jan 2013
-
Package ‘spBayes’
-
-
-
23
-
-
62849106305
-
Improving the performance of predictive process modeling for large datasets
-
Finley AO, Sang H, Banerjee S, Gelfand AE (2009) Improving the performance of predictive process modeling for large datasets. Comput Stat Data Anal 53:2873–2884
-
(2009)
Comput Stat Data Anal
, vol.53
, pp. 2873-2884
-
-
Finley, A.O.1
Sang, H.2
Banerjee, S.3
Gelfand, A.E.4
-
24
-
-
78651278795
-
On the behaviour of marginal and conditional AIC in linear mixed models
-
Greven S, Kneib T (2010) On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika 97:773–789
-
(2010)
Biometrika
, vol.97
, pp. 773-789
-
-
Greven, S.1
Kneib, T.2
-
26
-
-
0003684449
-
-
Springer, New York:
-
Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York
-
(2009)
The elements of statistical learning: data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
27
-
-
35348819628
-
Optimal geostatistical model selection
-
Huang HC, Chen CS (2007) Optimal geostatistical model selection. J Am Stat Assoc 102:1009–1024
-
(2007)
J Am Stat Assoc
, vol.102
, pp. 1009-1024
-
-
Huang, H.C.1
Chen, C.S.2
-
28
-
-
79958198727
-
Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets
-
Katzfuss M, Cressie N (2011a) Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets. J Time Ser Anal 32:430–446
-
(2011)
J Time Ser Anal
, vol.32
, pp. 430-446
-
-
Katzfuss, M.1
Cressie, N.2
-
29
-
-
85067746374
-
Tutorial on fixed rank kriging (FRK) of $${\rm CO}_2$$CO2 data
-
Department of Statistics, The Ohio State University, Columbus:
-
Katzfuss M, Cressie N (2011b) Tutorial on fixed rank kriging (FRK) of $${\rm CO}_2$$CO2 data. In: Proceedings of technical report, report no 858, Department of Statistics, The Ohio State University, Columbus. http://www.stat.osu.edu/sses/papers.html
-
(2011)
Proceedings of technical report, report no
, pp. 858
-
-
Katzfuss, M.1
Cressie, N.2
-
30
-
-
0000512689
-
Generalised information criteria in model selection
-
Konishi S, Kitagawa G (1996) Generalised information criteria in model selection. Biometrika 83:875–890
-
(1996)
Biometrika
, vol.83
, pp. 875-890
-
-
Konishi, S.1
Kitagawa, G.2
-
32
-
-
84875395305
-
Fixed and random effects selection in nonparametric additive mixed models
-
Lai R, Huang H-C, Lee T (2012) Fixed and random effects selection in nonparametric additive mixed models. Electron J Stat 6:810–842
-
(2012)
Electron J Stat
, vol.6
, pp. 810-842
-
-
Lai, R.1
Huang, H.-C.2
Lee, T.3
-
34
-
-
0033356561
-
Goutte C (1999) On optimal data split for generalization estimation and model selection
-
IEEE Press, New York:
-
Larsen J, Goutte C (1999) On optimal data split for generalization estimation and model selection. In: Proceedings IEEE workshop on neural networks for signal processing. IEEE Press, New York, pp 225–234
-
Proceedings IEEE workshop on neural networks for signal processing
, pp. 225-234
-
-
Larsen, J.1
-
35
-
-
50949086329
-
A note on conditional AIC for linear mixed-effects models
-
Liang H, Wu H, Zou G (2008) A note on conditional AIC for linear mixed-effects models. Biometrika 95:773–778
-
(2008)
Biometrika
, vol.95
, pp. 773-778
-
-
Liang, H.1
Wu, H.2
Zou, G.3
-
36
-
-
79961050814
-
An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach
-
Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J Royal Stat Soc Ser B 73:423–498
-
(2011)
J Royal Stat Soc Ser B
, vol.73
, pp. 423-498
-
-
Lindgren, F.1
Rue, H.2
Lindström, J.3
-
37
-
-
84915425007
-
Some comments on Cp
-
Mallows CL (1973) Some comments on Cp. Technometrics 15:661–675
-
(1973)
Technometrics
, vol.15
, pp. 661-675
-
-
Mallows, C.L.1
-
38
-
-
84865486245
-
Principles of geostatistics
-
Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266
-
(1963)
Econ Geol
, vol.58
, pp. 1246-1266
-
-
Matheron, G.1
-
39
-
-
84878968479
-
Model selection in linear mixed models
-
Müller S, Scealy JL, Welsh AH (2013) Model selection in linear mixed models. Stat Sci 28:135–167
-
(2013)
Stat Sci
, vol.28
, pp. 135-167
-
-
Müller, S.1
Scealy, J.L.2
Welsh, A.H.3
-
40
-
-
84870690375
-
Spatial statistical data fusion for remote sensing applications
-
Nguyen H, Cressie N, Braverman A (2012) Spatial statistical data fusion for remote sensing applications. J Am Stat Assoc 107:1004–1018
-
(2012)
J Am Stat Assoc
, vol.107
, pp. 1004-1018
-
-
Nguyen, H.1
Cressie, N.2
Braverman, A.3
-
42
-
-
0012286427
-
Spatial process estimates as smoothers
-
Wiley, New York:
-
Nychka DW (2014) Spatial process estimates as smoothers. In: Schmiek MG (ed) Smoothing and regression: approaches, computation and applications, rev edn. Wiley, New York, pp 393–424
-
(2014)
Smoothing and regression: approaches, computation and applications, rev edn
, pp. 393-424
-
-
Nychka, D.W.1
Schmiek, M.G.2
-
43
-
-
0031506560
-
Bayesian model averaging for linear regression models
-
Raftery A, Madigan D, Hoeting J (1997) Bayesian model averaging for linear regression models. J Am Stat Assoc 92:179–191
-
(1997)
J Am Stat Assoc
, vol.92
, pp. 179-191
-
-
Raftery, A.1
Madigan, D.2
Hoeting, J.3
-
44
-
-
85067758722
-
-
Ribeiro PJ Jr, Diggle PJ (2012) , retrieved Nov 2012
-
Ribeiro PJ Jr, Diggle PJ (2012) Package ‘geoR’. http://cran.r-project.org/web/packages/geoR/geoR.pdf, retrieved Nov 2012
-
Package ‘geoR’.
-
-
-
46
-
-
0031485477
-
Robustness aspects of model choice
-
Ronchetti E (1997) Robustness aspects of model choice. Statistica Sinica 7:327–338
-
(1997)
Statistica Sinica
, vol.7
, pp. 327-338
-
-
Ronchetti, E.1
-
47
-
-
21344481073
-
A robust version of Mallow’s Cp
-
Ronchetti E, Staudte R (1994) A robust version of Mallow’s Cp. J Am Stat Assoc 89:550–559
-
(1994)
J Am Stat Assoc
, vol.89
, pp. 550-559
-
-
Ronchetti, E.1
Staudte, R.2
-
48
-
-
20344397922
-
Efficient statistical mapping of avian count data
-
Royle JA, Wikle CK (2005) Efficient statistical mapping of avian count data. Environ Ecol Stat 12:225–243
-
(2005)
Environ Ecol Stat
, vol.12
, pp. 225-243
-
-
Royle, J.A.1
Wikle, C.K.2
-
49
-
-
84875118136
-
-
Rue H (2012) , retrieved Nov 2012
-
Rue H (2012) The R-INLA project. http://www.r-inla.org/, retrieved Nov 2012
-
The R-INLA project.
-
-
-
50
-
-
62849120031
-
Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations
-
Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations. J Royal Stat Soc Ser B 71:319–392
-
(2009)
J Royal Stat Soc Ser B
, vol.71
, pp. 319-392
-
-
Rue, H.1
Martino, S.2
Chopin, N.3
-
52
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6:461–464
-
(1978)
Ann Stat
, vol.6
, pp. 461-464
-
-
Schwarz, G.E.1
-
53
-
-
0642336882
-
An asymptotic theory for linear model selection
-
Shao J (1997) An asymptotic theory for linear model selection. Statistica Sinica 7:221–264
-
(1997)
Statistica Sinica
, vol.7
, pp. 221-264
-
-
Shao, J.1
-
54
-
-
35349012069
-
Global statistical analysis of MISR aerosol data: a massive data product from NASA’s Terra satellite
-
Shi T, Cressie N (2007) Global statistical analysis of MISR aerosol data: a massive data product from NASA’s Terra satellite. Environmetrics 18:665–680
-
(2007)
Environmetrics
, vol.18
, pp. 665-680
-
-
Shi, T.1
Cressie, N.2
-
55
-
-
0000169918
-
Estimation of the mean of the multivariate normal distribution
-
Stein C (1981) Estimation of the mean of the multivariate normal distribution. Ann Stat 9:1135–1151
-
(1981)
Ann Stat
, vol.9
, pp. 1135-1151
-
-
Stein, C.1
-
56
-
-
21644476631
-
Conditional Akaike information for mixed-effects models
-
Vaida F, Blanchard S (2005) Conditional Akaike information for mixed-effects models. Biometrika 92:351–370
-
(2005)
Biometrika
, vol.92
, pp. 351-370
-
-
Vaida, F.1
Blanchard, S.2
-
57
-
-
0003466536
-
-
Society for Industrial and Applied Mathematics, Philadelphia:
-
Wahba G (1990) Spline models for observational data. Society for Industrial and Applied Mathematics, Philadelphia
-
(1990)
Spline models for observational data
-
-
Wahba, G.1
-
58
-
-
79958225750
-
Low-rank representations for spatial processes
-
CRC Press, Boca Raton:
-
Wikle CK (2010) Low-rank representations for spatial processes. In: Gelfand AE, Diggle PJ, Fuentes M, Guttorp P (eds) Handbook of spatial statistics. CRC Press, Boca Raton, pp 107–118
-
(2010)
Handbook of spatial statistics
, pp. 107-118
-
-
Wikle, C.K.1
Gelfand, A.E.2
Diggle, P.J.3
Fuentes, M.4
Guttorp, P.5
-
59
-
-
77954097968
-
On selection of spatial linear models for lattice data
-
Zhu J, Huang H-C, Reyes P (2010) On selection of spatial linear models for lattice data. J Royal Stat Soc Ser B 72:389–402
-
(2010)
J Royal Stat Soc Ser B
, vol.72
, pp. 389-402
-
-
Zhu, J.1
Huang, H.-C.2
Reyes, P.3
|