메뉴 건너뛰기




Volumn 24, Issue 1, 2015, Pages 1-28

Comparing and selecting spatial predictors using local criteria

Author keywords

Best linear unbiased predictor; Information criteria; Model averaging; Model combination

Indexed keywords


EID: 84925510994     PISSN: 11330686     EISSN: 18638260     Source Type: Journal    
DOI: 10.1007/s11749-014-0415-1     Document Type: Article
Times cited : (17)

References (59)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723
    • (1974) IEEE Trans Autom Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 5
    • 84870712724 scopus 로고    scopus 로고
    • Shi T (2011) Selection of rank and basis functions in the spatial random effects model
    • American Statistical Association, Alexandria:
    • Bradley JR, Cressie N, Shi T (2011) Selection of rank and basis functions in the spatial random effects model. In: Proceedings of the 2011 joint statistical meetings, American Statistical Association, Alexandria, pp 3393–3406
    • Proceedings of the 2011 joint statistical meetings , pp. 3393-3406
    • Bradley, J.R.1    Cressie, N.2
  • 6
    • 85066570046 scopus 로고    scopus 로고
    • Shi T (2012) Local spatial-predictor selection
    • American Statistical Association, Alexandria:
    • Bradley JR, Cressie N, Shi T (2012) Local spatial-predictor selection. In: Proceedings of the 2012 joint statistical meetings, American Statistical Association, Alexandria, pp 3098–3110
    • Proceedings of the 2012 joint statistical meetings , pp. 3098-3110
    • Bradley, J.R.1    Cressie, N.2
  • 9
    • 84858276254 scopus 로고    scopus 로고
    • Geostatistical model averaging based on conditional information criteria
    • Chen CS, Huang HC (2011a) Geostatistical model averaging based on conditional information criteria. Environ Ecol Stat 19:23–35
    • (2011) Environ Ecol Stat , vol.19 , pp. 23-35
    • Chen, C.S.1    Huang, H.C.2
  • 10
    • 77956281310 scopus 로고    scopus 로고
    • An improved Cp criterion for spline smoothing
    • Chen C-S, Huang H-C (2011b) An improved Cp criterion for spline smoothing. J Stat Plan Inference 141:445–452
    • (2011) J Stat Plan Inference , vol.141 , pp. 445-452
    • Chen, C.-S.1    Huang, H.-C.2
  • 11
    • 77955409533 scopus 로고    scopus 로고
    • A new approach for selecting the number of factors
    • Chen Y-P, Huang H-C, Tu I-P (2010) A new approach for selecting the number of factors. Comput Stat Data Anal 54:2990–2998
    • (2010) Comput Stat Data Anal , vol.54 , pp. 2990-2998
    • Chen, Y.-P.1    Huang, H.-C.2    Tu, I.-P.3
  • 12
    • 0025683716 scopus 로고
    • The origins of kriging
    • Cressie N (1990) The origins of kriging. Math Geol 22:239–252
    • (1990) Math Geol , vol.22 , pp. 239-252
    • Cressie, N.1
  • 15
    • 37849041594 scopus 로고    scopus 로고
    • Fixed rank kriging for very large spatial data sets
    • Cressie N, Johannesson G (2008) Fixed rank kriging for very large spatial data sets. J Royal Stat Soc Ser B 70:209–226
    • (2008) J Royal Stat Soc Ser B , vol.70 , pp. 209-226
    • Cressie, N.1    Johannesson, G.2
  • 16
    • 77955119363 scopus 로고    scopus 로고
    • Using temporal variability to improve spatial mapping with application to satellite data
    • Cressie N, Shi T, Kang EL (2010) Using temporal variability to improve spatial mapping with application to satellite data. Can J Stat 38:271–289
    • (2010) Can J Stat , vol.38 , pp. 271-289
    • Cressie, N.1    Shi, T.2    Kang, E.L.3
  • 18
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • Donoho D, Johnstone I (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.1    Johnstone, I.2
  • 19
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: improvement on cross-validation
    • Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78:316–331
    • (1983) J Am Stat Assoc , vol.78 , pp. 316-331
    • Efron, B.1
  • 20
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • Efron B (1986) How biased is the apparent error rate of a prediction rule? J Am Stat Assoc 81:461–470
    • (1986) J Am Stat Assoc , vol.81 , pp. 461-470
    • Efron, B.1
  • 21
    • 4944239996 scopus 로고    scopus 로고
    • The estimation of prediction error: covariance penalties and cross-validation
    • Efron B (2004) The estimation of prediction error: covariance penalties and cross-validation. J Am Stat Assoc 99:619–642
    • (2004) J Am Stat Assoc , vol.99 , pp. 619-642
    • Efron, B.1
  • 22
    • 85067764208 scopus 로고    scopus 로고
    • Finley AO, Banerjee S, Carlin B (2012) . , retrieved Jan 2013
    • Finley AO, Banerjee S, Carlin B (2012) Package ‘spBayes’. http://cran.r-project.org/web/packages/spBayes/spBayes.pdf, retrieved Jan 2013
    • Package ‘spBayes’
  • 23
    • 62849106305 scopus 로고    scopus 로고
    • Improving the performance of predictive process modeling for large datasets
    • Finley AO, Sang H, Banerjee S, Gelfand AE (2009) Improving the performance of predictive process modeling for large datasets. Comput Stat Data Anal 53:2873–2884
    • (2009) Comput Stat Data Anal , vol.53 , pp. 2873-2884
    • Finley, A.O.1    Sang, H.2    Banerjee, S.3    Gelfand, A.E.4
  • 24
    • 78651278795 scopus 로고    scopus 로고
    • On the behaviour of marginal and conditional AIC in linear mixed models
    • Greven S, Kneib T (2010) On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika 97:773–789
    • (2010) Biometrika , vol.97 , pp. 773-789
    • Greven, S.1    Kneib, T.2
  • 27
    • 35348819628 scopus 로고    scopus 로고
    • Optimal geostatistical model selection
    • Huang HC, Chen CS (2007) Optimal geostatistical model selection. J Am Stat Assoc 102:1009–1024
    • (2007) J Am Stat Assoc , vol.102 , pp. 1009-1024
    • Huang, H.C.1    Chen, C.S.2
  • 28
    • 79958198727 scopus 로고    scopus 로고
    • Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets
    • Katzfuss M, Cressie N (2011a) Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets. J Time Ser Anal 32:430–446
    • (2011) J Time Ser Anal , vol.32 , pp. 430-446
    • Katzfuss, M.1    Cressie, N.2
  • 29
    • 85067746374 scopus 로고    scopus 로고
    • Tutorial on fixed rank kriging (FRK) of $${\rm CO}_2$$CO2 data
    • Department of Statistics, The Ohio State University, Columbus:
    • Katzfuss M, Cressie N (2011b) Tutorial on fixed rank kriging (FRK) of $${\rm CO}_2$$CO2 data. In: Proceedings of technical report, report no 858, Department of Statistics, The Ohio State University, Columbus. http://www.stat.osu.edu/sses/papers.html
    • (2011) Proceedings of technical report, report no , pp. 858
    • Katzfuss, M.1    Cressie, N.2
  • 30
    • 0000512689 scopus 로고    scopus 로고
    • Generalised information criteria in model selection
    • Konishi S, Kitagawa G (1996) Generalised information criteria in model selection. Biometrika 83:875–890
    • (1996) Biometrika , vol.83 , pp. 875-890
    • Konishi, S.1    Kitagawa, G.2
  • 31
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86
    • (1951) Ann Math Stat , vol.22 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 32
    • 84875395305 scopus 로고    scopus 로고
    • Fixed and random effects selection in nonparametric additive mixed models
    • Lai R, Huang H-C, Lee T (2012) Fixed and random effects selection in nonparametric additive mixed models. Electron J Stat 6:810–842
    • (2012) Electron J Stat , vol.6 , pp. 810-842
    • Lai, R.1    Huang, H.-C.2    Lee, T.3
  • 34
    • 0033356561 scopus 로고    scopus 로고
    • Goutte C (1999) On optimal data split for generalization estimation and model selection
    • IEEE Press, New York:
    • Larsen J, Goutte C (1999) On optimal data split for generalization estimation and model selection. In: Proceedings IEEE workshop on neural networks for signal processing. IEEE Press, New York, pp 225–234
    • Proceedings IEEE workshop on neural networks for signal processing , pp. 225-234
    • Larsen, J.1
  • 35
    • 50949086329 scopus 로고    scopus 로고
    • A note on conditional AIC for linear mixed-effects models
    • Liang H, Wu H, Zou G (2008) A note on conditional AIC for linear mixed-effects models. Biometrika 95:773–778
    • (2008) Biometrika , vol.95 , pp. 773-778
    • Liang, H.1    Wu, H.2    Zou, G.3
  • 36
    • 79961050814 scopus 로고    scopus 로고
    • An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach
    • Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J Royal Stat Soc Ser B 73:423–498
    • (2011) J Royal Stat Soc Ser B , vol.73 , pp. 423-498
    • Lindgren, F.1    Rue, H.2    Lindström, J.3
  • 37
    • 84915425007 scopus 로고
    • Some comments on Cp
    • Mallows CL (1973) Some comments on Cp. Technometrics 15:661–675
    • (1973) Technometrics , vol.15 , pp. 661-675
    • Mallows, C.L.1
  • 38
    • 84865486245 scopus 로고
    • Principles of geostatistics
    • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266
    • (1963) Econ Geol , vol.58 , pp. 1246-1266
    • Matheron, G.1
  • 39
    • 84878968479 scopus 로고    scopus 로고
    • Model selection in linear mixed models
    • Müller S, Scealy JL, Welsh AH (2013) Model selection in linear mixed models. Stat Sci 28:135–167
    • (2013) Stat Sci , vol.28 , pp. 135-167
    • Müller, S.1    Scealy, J.L.2    Welsh, A.H.3
  • 40
    • 84870690375 scopus 로고    scopus 로고
    • Spatial statistical data fusion for remote sensing applications
    • Nguyen H, Cressie N, Braverman A (2012) Spatial statistical data fusion for remote sensing applications. J Am Stat Assoc 107:1004–1018
    • (2012) J Am Stat Assoc , vol.107 , pp. 1004-1018
    • Nguyen, H.1    Cressie, N.2    Braverman, A.3
  • 41
    • 84931064861 scopus 로고    scopus 로고
    • A multi-resolution Gaussian process model for the analysis of large spatial data sets.
    • Nychka D, Bandyopadhyay S, Hammerling D, Lindgren F, Sain S (2014) A multi-resolution Gaussian process model for the analysis of large spatial data sets. J Comput Gr Stat. doi:10.1080/10618600.2014.914946
    • (2014) J Comput Gr Stat
    • Nychka, D.1    Bandyopadhyay, S.2    Hammerling, D.3    Lindgren, F.4    Sain, S.5
  • 43
    • 0031506560 scopus 로고    scopus 로고
    • Bayesian model averaging for linear regression models
    • Raftery A, Madigan D, Hoeting J (1997) Bayesian model averaging for linear regression models. J Am Stat Assoc 92:179–191
    • (1997) J Am Stat Assoc , vol.92 , pp. 179-191
    • Raftery, A.1    Madigan, D.2    Hoeting, J.3
  • 44
    • 85067758722 scopus 로고    scopus 로고
    • Ribeiro PJ Jr, Diggle PJ (2012) , retrieved Nov 2012
    • Ribeiro PJ Jr, Diggle PJ (2012) Package ‘geoR’. http://cran.r-project.org/web/packages/geoR/geoR.pdf, retrieved Nov 2012
    • Package ‘geoR’.
  • 46
    • 0031485477 scopus 로고    scopus 로고
    • Robustness aspects of model choice
    • Ronchetti E (1997) Robustness aspects of model choice. Statistica Sinica 7:327–338
    • (1997) Statistica Sinica , vol.7 , pp. 327-338
    • Ronchetti, E.1
  • 47
    • 21344481073 scopus 로고
    • A robust version of Mallow’s Cp
    • Ronchetti E, Staudte R (1994) A robust version of Mallow’s Cp. J Am Stat Assoc 89:550–559
    • (1994) J Am Stat Assoc , vol.89 , pp. 550-559
    • Ronchetti, E.1    Staudte, R.2
  • 48
    • 20344397922 scopus 로고    scopus 로고
    • Efficient statistical mapping of avian count data
    • Royle JA, Wikle CK (2005) Efficient statistical mapping of avian count data. Environ Ecol Stat 12:225–243
    • (2005) Environ Ecol Stat , vol.12 , pp. 225-243
    • Royle, J.A.1    Wikle, C.K.2
  • 49
    • 84875118136 scopus 로고    scopus 로고
    • Rue H (2012) , retrieved Nov 2012
    • Rue H (2012) The R-INLA project. http://www.r-inla.org/, retrieved Nov 2012
    • The R-INLA project.
  • 50
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations
    • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations. J Royal Stat Soc Ser B 71:319–392
    • (2009) J Royal Stat Soc Ser B , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 52
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6:461–464
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.E.1
  • 53
    • 0642336882 scopus 로고    scopus 로고
    • An asymptotic theory for linear model selection
    • Shao J (1997) An asymptotic theory for linear model selection. Statistica Sinica 7:221–264
    • (1997) Statistica Sinica , vol.7 , pp. 221-264
    • Shao, J.1
  • 54
    • 35349012069 scopus 로고    scopus 로고
    • Global statistical analysis of MISR aerosol data: a massive data product from NASA’s Terra satellite
    • Shi T, Cressie N (2007) Global statistical analysis of MISR aerosol data: a massive data product from NASA’s Terra satellite. Environmetrics 18:665–680
    • (2007) Environmetrics , vol.18 , pp. 665-680
    • Shi, T.1    Cressie, N.2
  • 55
    • 0000169918 scopus 로고
    • Estimation of the mean of the multivariate normal distribution
    • Stein C (1981) Estimation of the mean of the multivariate normal distribution. Ann Stat 9:1135–1151
    • (1981) Ann Stat , vol.9 , pp. 1135-1151
    • Stein, C.1
  • 56
    • 21644476631 scopus 로고    scopus 로고
    • Conditional Akaike information for mixed-effects models
    • Vaida F, Blanchard S (2005) Conditional Akaike information for mixed-effects models. Biometrika 92:351–370
    • (2005) Biometrika , vol.92 , pp. 351-370
    • Vaida, F.1    Blanchard, S.2
  • 57
    • 0003466536 scopus 로고
    • Society for Industrial and Applied Mathematics, Philadelphia:
    • Wahba G (1990) Spline models for observational data. Society for Industrial and Applied Mathematics, Philadelphia
    • (1990) Spline models for observational data
    • Wahba, G.1
  • 59
    • 77954097968 scopus 로고    scopus 로고
    • On selection of spatial linear models for lattice data
    • Zhu J, Huang H-C, Reyes P (2010) On selection of spatial linear models for lattice data. J Royal Stat Soc Ser B 72:389–402
    • (2010) J Royal Stat Soc Ser B , vol.72 , pp. 389-402
    • Zhu, J.1    Huang, H.-C.2    Reyes, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.