-
2
-
-
0032825295
-
Measuring thermal conductivity of fluids containing oxide nanoparticles
-
Lee S., Choi S.U.S., Li S., Eastman J.A. Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat. Trans-T. ASME. 1999, 121:280-289.
-
(1999)
J. Heat. Trans-T. ASME.
, vol.121
, pp. 280-289
-
-
Lee, S.1
Choi, S.U.S.2
Li, S.3
Eastman, J.A.4
-
4
-
-
0036537378
-
Thermal conductivity enhancement of suspensions containing nanosized alumina particles
-
Xie H., Wang J., Xi T., Liu Y., Ai F., Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 2002, 91:4568-4572.
-
(2002)
J. Appl. Phys.
, vol.91
, pp. 4568-4572
-
-
Xie, H.1
Wang, J.2
Xi, T.3
Liu, Y.4
Ai, F.5
Wu, Q.6
-
5
-
-
84878430911
-
Comparative study between metal oxide nanopowders on thermal characteristics of nanofluid flow through helical coils
-
Kahani M., Zeinali Heris S., Mousavi S.M. Comparative study between metal oxide nanopowders on thermal characteristics of nanofluid flow through helical coils. Powder Technol. 2013, 246:82-92.
-
(2013)
Powder Technol.
, vol.246
, pp. 82-92
-
-
Kahani, M.1
Zeinali Heris, S.2
Mousavi, S.M.3
-
6
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
Das S.K., Putra N., Thiesen P., Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat. Trans-T. ASME. 2003, 125:567-574.
-
(2003)
J. Heat. Trans-T. ASME.
, vol.125
, pp. 567-574
-
-
Das, S.K.1
Putra, N.2
Thiesen, P.3
Roetzel, W.4
-
7
-
-
33847322946
-
Study of thermal conductivity of nanofluids for the application of heat transfer fluids
-
Yoo D.H., Hong K.S., Yang H.S. Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim. Acta 2007, 455:66-69.
-
(2007)
Thermochim. Acta
, vol.455
, pp. 66-69
-
-
Yoo, D.H.1
Hong, K.S.2
Yang, H.S.3
-
8
-
-
84892630914
-
Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method
-
Hatami M., Sheikholeslami M., Ganji D.D. Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method. Powder Technol. 2014, 253:769-779.
-
(2014)
Powder Technol.
, vol.253
, pp. 769-779
-
-
Hatami, M.1
Sheikholeslami, M.2
Ganji, D.D.3
-
9
-
-
0242582398
-
Thermal conductivity of heterogeneous two component systems
-
Hamilton R.L., Crosser O.K. Thermal conductivity of heterogeneous two component systems. Ind. Eng. Chem. Fundam. 1962, 1:187-191.
-
(1962)
Ind. Eng. Chem. Fundam.
, vol.1
, pp. 187-191
-
-
Hamilton, R.L.1
Crosser, O.K.2
-
13
-
-
33646739701
-
Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
-
084314-1-084314-8
-
Li C.H., Peterson G.P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys. 2006, 99:084314-1-084314-8.
-
(2006)
J. Appl. Phys.
, vol.99
-
-
Li, C.H.1
Peterson, G.P.2
-
14
-
-
39449114611
-
Investigations of thermal conductivity and viscosity of nanofluids
-
Murshed S.M.S., Leong K.C., Yang C. Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci. 2008, 47:560-568.
-
(2008)
Int. J. Therm. Sci.
, vol.47
, pp. 560-568
-
-
Murshed, S.M.S.1
Leong, K.C.2
Yang, C.3
-
15
-
-
77955470128
-
The effect of alumina/water nanofluid particle size on thermal conductivity
-
Teng T.P., Hung Y.H., Teng T.C., Mo H.E., Hsu H.G. The effect of alumina/water nanofluid particle size on thermal conductivity. Appl. Therm. Eng. 2010, 30:2213-2218.
-
(2010)
Appl. Therm. Eng.
, vol.30
, pp. 2213-2218
-
-
Teng, T.P.1
Hung, Y.H.2
Teng, T.C.3
Mo, H.E.4
Hsu, H.G.5
-
16
-
-
0031143265
-
Effective thermal conductivity of particulate composites with interfacial thermal resistance
-
Nan C.W., Birringer R., Clarke D.R., Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 1997, 81:6692-6699.
-
(1997)
J. Appl. Phys.
, vol.81
, pp. 6692-6699
-
-
Nan, C.W.1
Birringer, R.2
Clarke, D.R.3
Gleiter, H.4
-
17
-
-
0038082987
-
The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model
-
Yu W., Choi S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanoparticle Res. 2003, 5:167-171.
-
(2003)
J. Nanoparticle Res.
, vol.5
, pp. 167-171
-
-
Yu, W.1
Choi, S.U.S.2
-
18
-
-
18544377641
-
Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture
-
Xie H., Fujii M., Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transfer 2005, 48:2926-2932.
-
(2005)
Int. J. Heat Mass Transfer
, vol.48
, pp. 2926-2932
-
-
Xie, H.1
Fujii, M.2
Zhang, X.3
-
19
-
-
0037394035
-
Aggregation structure and thermal conductivity of nanofluids
-
Xuan Y., Li Q., Hu W. Aggregation structure and thermal conductivity of nanofluids. AICHE J. 2003, 49:1038-1043.
-
(2003)
AICHE J.
, vol.49
, pp. 1038-1043
-
-
Xuan, Y.1
Li, Q.2
Hu, W.3
-
20
-
-
16244411133
-
A new thermal conductivity model for nanofluids
-
Koo J., Kleinstreuer C. A new thermal conductivity model for nanofluids. J. Nanoparticle Res. 2004, 6:577-588.
-
(2004)
J. Nanoparticle Res.
, vol.6
, pp. 577-588
-
-
Koo, J.1
Kleinstreuer, C.2
-
21
-
-
56649120696
-
New temperature dependent thermal conductivity data for water-based nanofluids
-
Mintsa H.A., Roy G., Nguyen C.T., Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 2009, 48:363-371.
-
(2009)
Int. J. Therm. Sci.
, vol.48
, pp. 363-371
-
-
Mintsa, H.A.1
Roy, G.2
Nguyen, C.T.3
Doucet, D.4
-
23
-
-
84903192529
-
Modeling and analysis of effective thermal conductivity of sandstone at high pressure and temperature using optimal artificial neural networks
-
Vaferi B., Gitifar V., Darvishi P., Mowla D. Modeling and analysis of effective thermal conductivity of sandstone at high pressure and temperature using optimal artificial neural networks. J. Petrol. Sci. Eng. 2014, 119:69-78.
-
(2014)
J. Petrol. Sci. Eng.
, vol.119
, pp. 69-78
-
-
Vaferi, B.1
Gitifar, V.2
Darvishi, P.3
Mowla, D.4
-
24
-
-
0036568112
-
Neural networks for predicting thermal conductivity of bakery products
-
Sablani S.S., Baik O.D., Marcotte M. Neural networks for predicting thermal conductivity of bakery products. J. Food Eng. 2002, 52:299-304.
-
(2002)
J. Food Eng.
, vol.52
, pp. 299-304
-
-
Sablani, S.S.1
Baik, O.D.2
Marcotte, M.3
-
25
-
-
78650621663
-
Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network
-
Hojjat M., Etemad S.G., Bagheri R., Thibault J. Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network. Int. J. Heat Mass Transfer 2011, 54:1017-1023.
-
(2011)
Int. J. Heat Mass Transfer
, vol.54
, pp. 1017-1023
-
-
Hojjat, M.1
Etemad, S.G.2
Bagheri, R.3
Thibault, J.4
-
26
-
-
78349304474
-
Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks
-
Papari M.M., Yousefi F., Moghadasi J., Karimi H., Campo A. Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks. Int. J. Therm. Sci. 2011, 50:44-52.
-
(2011)
Int. J. Therm. Sci.
, vol.50
, pp. 44-52
-
-
Papari, M.M.1
Yousefi, F.2
Moghadasi, J.3
Karimi, H.4
Campo, A.5
-
27
-
-
84858112800
-
Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids
-
Longo G.A., Zilio C., Ceseracciu E., Reggiani M. Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids. Nano Energy 2012, 1:290-296.
-
(2012)
Nano Energy
, vol.1
, pp. 290-296
-
-
Longo, G.A.1
Zilio, C.2
Ceseracciu, E.3
Reggiani, M.4
-
28
-
-
84900790640
-
Mixed convective heat transfer of water/alumina nanofluid inside a vertical microchannel
-
Malvandi A., Ganji D.D. Mixed convective heat transfer of water/alumina nanofluid inside a vertical microchannel. Powder Technol. 2014, 263:37-44.
-
(2014)
Powder Technol.
, vol.263
, pp. 37-44
-
-
Malvandi, A.1
Ganji, D.D.2
-
30
-
-
84925127590
-
4C composite powders in a planetary mill using an artificial neural network
-
4C composite powders in a planetary mill using an artificial neural network. Sci. Eng. Compos. Mater. 2014, 21:411-420.
-
(2014)
Sci. Eng. Compos. Mater.
, vol.21
, pp. 411-420
-
-
Varol, T.1
Canakci, A.2
Ozsahin, S.3
-
31
-
-
84875074871
-
Analysis of the effect of a new process control agent technique on the mechanical milling process using a neural network model: measurement and modeling
-
Canakci A., Varol T., Ozsahin S. Analysis of the effect of a new process control agent technique on the mechanical milling process using a neural network model: measurement and modeling. Measurement 2013, 46:1818-1827.
-
(2013)
Measurement
, vol.46
, pp. 1818-1827
-
-
Canakci, A.1
Varol, T.2
Ozsahin, S.3
-
32
-
-
84904559041
-
Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes
-
Vaferi B., Samimi F., Pakgohar E., Mowla D. Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes. Powder Technol. 2014, 267:1-10.
-
(2014)
Powder Technol.
, vol.267
, pp. 1-10
-
-
Vaferi, B.1
Samimi, F.2
Pakgohar, E.3
Mowla, D.4
-
33
-
-
84863449231
-
Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks
-
Canakci A., Ozsahin S., Varol T. Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks. Powder Technol. 2012, 228:26-35.
-
(2012)
Powder Technol.
, vol.228
, pp. 26-35
-
-
Canakci, A.1
Ozsahin, S.2
Varol, T.3
-
34
-
-
79957443608
-
Automatic recognition of oil reservoir models from well testing data by using multi-layer perceptron networks
-
Vaferi B., Eslamloueyan R., Ayatollahi S. Automatic recognition of oil reservoir models from well testing data by using multi-layer perceptron networks. J. Petrol. Sci. Eng. 2011, 77:254-262.
-
(2011)
J. Petrol. Sci. Eng.
, vol.77
, pp. 254-262
-
-
Vaferi, B.1
Eslamloueyan, R.2
Ayatollahi, S.3
-
36
-
-
0000169232
-
An algorithm for least-squares estimation of nonlinear parameters
-
Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters. SIAM. J. 1963, 11:431-441.
-
(1963)
SIAM. J.
, vol.11
, pp. 431-441
-
-
Marquardt, D.W.1
-
37
-
-
79960991869
-
Experimental measurement of thermophysical properties of oxide-water nano-fluids down to ice-point
-
Longo G.A., Zilio C. Experimental measurement of thermophysical properties of oxide-water nano-fluids down to ice-point. Exp. Thermal Fluid Sci. 2011, 35:1313-1324.
-
(2011)
Exp. Thermal Fluid Sci.
, vol.35
, pp. 1313-1324
-
-
Longo, G.A.1
Zilio, C.2
-
38
-
-
37749004290
-
Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory
-
061203-1-061203-16
-
Timofeeva E.V., Gavrilov A.N., McCloskey J.M., Tolmachev Y.V., Sprunt S., Lopatina L.M., Selinger J.V. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys. Rev. E 2007, 76:061203-1-061203-16.
-
(2007)
Phys. Rev. E
, vol.76
-
-
Timofeeva, E.V.1
Gavrilov, A.N.2
McCloskey, J.M.3
Tolmachev, Y.V.4
Sprunt, S.5
Lopatina, L.M.6
Selinger, J.V.7
-
39
-
-
33947722121
-
Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
-
Zhang X., Gu H., Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp. Thermal Fluid Sci. 2007, 31:593-599.
-
(2007)
Exp. Thermal Fluid Sci.
, vol.31
, pp. 593-599
-
-
Zhang, X.1
Gu, H.2
Fujii, M.3
-
40
-
-
84865023901
-
Measurement of the thermal conductivity of titania and alumina nanofluids
-
Yiamsawasd T., Dalkilic A.S., Wongwises S. Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim. Acta 2012, 545:48-56.
-
(2012)
Thermochim. Acta
, vol.545
, pp. 48-56
-
-
Yiamsawasd, T.1
Dalkilic, A.S.2
Wongwises, S.3
-
41
-
-
84867743274
-
Thermal conductivity and heat transfer of ceramic nanofluids
-
Buschmann M.H. Thermal conductivity and heat transfer of ceramic nanofluids. Int. J. Therm. Sci. 2012, 62:19-28.
-
(2012)
Int. J. Therm. Sci.
, vol.62
, pp. 19-28
-
-
Buschmann, M.H.1
-
42
-
-
67650732997
-
The effect of particle size on the thermal conductivity of alumina nanofluids
-
Beck M., Yuan Y., Warrier P., Teja A. The effect of particle size on the thermal conductivity of alumina nanofluids. J. Nanoparticle Res. 2009, 11:1129-1136.
-
(2009)
J. Nanoparticle Res.
, vol.11
, pp. 1129-1136
-
-
Beck, M.1
Yuan, Y.2
Warrier, P.3
Teja, A.4
-
43
-
-
77955092055
-
The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol+water mixtures
-
Beck M., Yuan Y., Warrier P., Teja A. The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol+water mixtures. J. Nanoparticle Res. 2010, 12:1469-1477.
-
(2010)
J. Nanoparticle Res.
, vol.12
, pp. 1469-1477
-
-
Beck, M.1
Yuan, Y.2
Warrier, P.3
Teja, A.4
|