메뉴 건너뛰기




Volumn 278, Issue , 2015, Pages 1-10

Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks

Author keywords

Alumina water based nanofluids; Artificial neural network; Thermal conductivity ratio

Indexed keywords

ALUMINA; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; MEAN SQUARE ERROR; NANOFLUIDICS; NEURAL NETWORKS; THERMAL CONDUCTIVITY;

EID: 84925146611     PISSN: 00325910     EISSN: 1873328X     Source Type: Journal    
DOI: 10.1016/j.powtec.2015.03.005     Document Type: Article
Times cited : (139)

References (45)
  • 2
    • 0032825295 scopus 로고    scopus 로고
    • Measuring thermal conductivity of fluids containing oxide nanoparticles
    • Lee S., Choi S.U.S., Li S., Eastman J.A. Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat. Trans-T. ASME. 1999, 121:280-289.
    • (1999) J. Heat. Trans-T. ASME. , vol.121 , pp. 280-289
    • Lee, S.1    Choi, S.U.S.2    Li, S.3    Eastman, J.A.4
  • 3
    • 0033339009 scopus 로고    scopus 로고
    • Thermal conductivity of nanoparticle-fluid mixture
    • Wang X., Xu X., Choi S.U.S. Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 1999, 13:474-480.
    • (1999) J. Thermophys. Heat Transf. , vol.13 , pp. 474-480
    • Wang, X.1    Xu, X.2    Choi, S.U.S.3
  • 4
    • 0036537378 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of suspensions containing nanosized alumina particles
    • Xie H., Wang J., Xi T., Liu Y., Ai F., Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 2002, 91:4568-4572.
    • (2002) J. Appl. Phys. , vol.91 , pp. 4568-4572
    • Xie, H.1    Wang, J.2    Xi, T.3    Liu, Y.4    Ai, F.5    Wu, Q.6
  • 5
    • 84878430911 scopus 로고    scopus 로고
    • Comparative study between metal oxide nanopowders on thermal characteristics of nanofluid flow through helical coils
    • Kahani M., Zeinali Heris S., Mousavi S.M. Comparative study between metal oxide nanopowders on thermal characteristics of nanofluid flow through helical coils. Powder Technol. 2013, 246:82-92.
    • (2013) Powder Technol. , vol.246 , pp. 82-92
    • Kahani, M.1    Zeinali Heris, S.2    Mousavi, S.M.3
  • 6
    • 0042418742 scopus 로고    scopus 로고
    • Temperature dependence of thermal conductivity enhancement for nanofluids
    • Das S.K., Putra N., Thiesen P., Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat. Trans-T. ASME. 2003, 125:567-574.
    • (2003) J. Heat. Trans-T. ASME. , vol.125 , pp. 567-574
    • Das, S.K.1    Putra, N.2    Thiesen, P.3    Roetzel, W.4
  • 7
    • 33847322946 scopus 로고    scopus 로고
    • Study of thermal conductivity of nanofluids for the application of heat transfer fluids
    • Yoo D.H., Hong K.S., Yang H.S. Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim. Acta 2007, 455:66-69.
    • (2007) Thermochim. Acta , vol.455 , pp. 66-69
    • Yoo, D.H.1    Hong, K.S.2    Yang, H.S.3
  • 8
    • 84892630914 scopus 로고    scopus 로고
    • Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method
    • Hatami M., Sheikholeslami M., Ganji D.D. Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method. Powder Technol. 2014, 253:769-779.
    • (2014) Powder Technol. , vol.253 , pp. 769-779
    • Hatami, M.1    Sheikholeslami, M.2    Ganji, D.D.3
  • 9
    • 0242582398 scopus 로고
    • Thermal conductivity of heterogeneous two component systems
    • Hamilton R.L., Crosser O.K. Thermal conductivity of heterogeneous two component systems. Ind. Eng. Chem. Fundam. 1962, 1:187-191.
    • (1962) Ind. Eng. Chem. Fundam. , vol.1 , pp. 187-191
    • Hamilton, R.L.1    Crosser, O.K.2
  • 13
    • 33646739701 scopus 로고    scopus 로고
    • Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
    • 084314-1-084314-8
    • Li C.H., Peterson G.P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys. 2006, 99:084314-1-084314-8.
    • (2006) J. Appl. Phys. , vol.99
    • Li, C.H.1    Peterson, G.P.2
  • 14
    • 39449114611 scopus 로고    scopus 로고
    • Investigations of thermal conductivity and viscosity of nanofluids
    • Murshed S.M.S., Leong K.C., Yang C. Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci. 2008, 47:560-568.
    • (2008) Int. J. Therm. Sci. , vol.47 , pp. 560-568
    • Murshed, S.M.S.1    Leong, K.C.2    Yang, C.3
  • 15
    • 77955470128 scopus 로고    scopus 로고
    • The effect of alumina/water nanofluid particle size on thermal conductivity
    • Teng T.P., Hung Y.H., Teng T.C., Mo H.E., Hsu H.G. The effect of alumina/water nanofluid particle size on thermal conductivity. Appl. Therm. Eng. 2010, 30:2213-2218.
    • (2010) Appl. Therm. Eng. , vol.30 , pp. 2213-2218
    • Teng, T.P.1    Hung, Y.H.2    Teng, T.C.3    Mo, H.E.4    Hsu, H.G.5
  • 16
    • 0031143265 scopus 로고    scopus 로고
    • Effective thermal conductivity of particulate composites with interfacial thermal resistance
    • Nan C.W., Birringer R., Clarke D.R., Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 1997, 81:6692-6699.
    • (1997) J. Appl. Phys. , vol.81 , pp. 6692-6699
    • Nan, C.W.1    Birringer, R.2    Clarke, D.R.3    Gleiter, H.4
  • 17
    • 0038082987 scopus 로고    scopus 로고
    • The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model
    • Yu W., Choi S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanoparticle Res. 2003, 5:167-171.
    • (2003) J. Nanoparticle Res. , vol.5 , pp. 167-171
    • Yu, W.1    Choi, S.U.S.2
  • 18
    • 18544377641 scopus 로고    scopus 로고
    • Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture
    • Xie H., Fujii M., Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transfer 2005, 48:2926-2932.
    • (2005) Int. J. Heat Mass Transfer , vol.48 , pp. 2926-2932
    • Xie, H.1    Fujii, M.2    Zhang, X.3
  • 19
    • 0037394035 scopus 로고    scopus 로고
    • Aggregation structure and thermal conductivity of nanofluids
    • Xuan Y., Li Q., Hu W. Aggregation structure and thermal conductivity of nanofluids. AICHE J. 2003, 49:1038-1043.
    • (2003) AICHE J. , vol.49 , pp. 1038-1043
    • Xuan, Y.1    Li, Q.2    Hu, W.3
  • 20
    • 16244411133 scopus 로고    scopus 로고
    • A new thermal conductivity model for nanofluids
    • Koo J., Kleinstreuer C. A new thermal conductivity model for nanofluids. J. Nanoparticle Res. 2004, 6:577-588.
    • (2004) J. Nanoparticle Res. , vol.6 , pp. 577-588
    • Koo, J.1    Kleinstreuer, C.2
  • 21
    • 56649120696 scopus 로고    scopus 로고
    • New temperature dependent thermal conductivity data for water-based nanofluids
    • Mintsa H.A., Roy G., Nguyen C.T., Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 2009, 48:363-371.
    • (2009) Int. J. Therm. Sci. , vol.48 , pp. 363-371
    • Mintsa, H.A.1    Roy, G.2    Nguyen, C.T.3    Doucet, D.4
  • 23
    • 84903192529 scopus 로고    scopus 로고
    • Modeling and analysis of effective thermal conductivity of sandstone at high pressure and temperature using optimal artificial neural networks
    • Vaferi B., Gitifar V., Darvishi P., Mowla D. Modeling and analysis of effective thermal conductivity of sandstone at high pressure and temperature using optimal artificial neural networks. J. Petrol. Sci. Eng. 2014, 119:69-78.
    • (2014) J. Petrol. Sci. Eng. , vol.119 , pp. 69-78
    • Vaferi, B.1    Gitifar, V.2    Darvishi, P.3    Mowla, D.4
  • 24
    • 0036568112 scopus 로고    scopus 로고
    • Neural networks for predicting thermal conductivity of bakery products
    • Sablani S.S., Baik O.D., Marcotte M. Neural networks for predicting thermal conductivity of bakery products. J. Food Eng. 2002, 52:299-304.
    • (2002) J. Food Eng. , vol.52 , pp. 299-304
    • Sablani, S.S.1    Baik, O.D.2    Marcotte, M.3
  • 25
    • 78650621663 scopus 로고    scopus 로고
    • Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network
    • Hojjat M., Etemad S.G., Bagheri R., Thibault J. Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network. Int. J. Heat Mass Transfer 2011, 54:1017-1023.
    • (2011) Int. J. Heat Mass Transfer , vol.54 , pp. 1017-1023
    • Hojjat, M.1    Etemad, S.G.2    Bagheri, R.3    Thibault, J.4
  • 26
    • 78349304474 scopus 로고    scopus 로고
    • Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks
    • Papari M.M., Yousefi F., Moghadasi J., Karimi H., Campo A. Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks. Int. J. Therm. Sci. 2011, 50:44-52.
    • (2011) Int. J. Therm. Sci. , vol.50 , pp. 44-52
    • Papari, M.M.1    Yousefi, F.2    Moghadasi, J.3    Karimi, H.4    Campo, A.5
  • 27
    • 84858112800 scopus 로고    scopus 로고
    • Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids
    • Longo G.A., Zilio C., Ceseracciu E., Reggiani M. Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids. Nano Energy 2012, 1:290-296.
    • (2012) Nano Energy , vol.1 , pp. 290-296
    • Longo, G.A.1    Zilio, C.2    Ceseracciu, E.3    Reggiani, M.4
  • 28
    • 84900790640 scopus 로고    scopus 로고
    • Mixed convective heat transfer of water/alumina nanofluid inside a vertical microchannel
    • Malvandi A., Ganji D.D. Mixed convective heat transfer of water/alumina nanofluid inside a vertical microchannel. Powder Technol. 2014, 263:37-44.
    • (2014) Powder Technol. , vol.263 , pp. 37-44
    • Malvandi, A.1    Ganji, D.D.2
  • 30
    • 84925127590 scopus 로고    scopus 로고
    • 4C composite powders in a planetary mill using an artificial neural network
    • 4C composite powders in a planetary mill using an artificial neural network. Sci. Eng. Compos. Mater. 2014, 21:411-420.
    • (2014) Sci. Eng. Compos. Mater. , vol.21 , pp. 411-420
    • Varol, T.1    Canakci, A.2    Ozsahin, S.3
  • 31
    • 84875074871 scopus 로고    scopus 로고
    • Analysis of the effect of a new process control agent technique on the mechanical milling process using a neural network model: measurement and modeling
    • Canakci A., Varol T., Ozsahin S. Analysis of the effect of a new process control agent technique on the mechanical milling process using a neural network model: measurement and modeling. Measurement 2013, 46:1818-1827.
    • (2013) Measurement , vol.46 , pp. 1818-1827
    • Canakci, A.1    Varol, T.2    Ozsahin, S.3
  • 32
    • 84904559041 scopus 로고    scopus 로고
    • Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes
    • Vaferi B., Samimi F., Pakgohar E., Mowla D. Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes. Powder Technol. 2014, 267:1-10.
    • (2014) Powder Technol. , vol.267 , pp. 1-10
    • Vaferi, B.1    Samimi, F.2    Pakgohar, E.3    Mowla, D.4
  • 33
    • 84863449231 scopus 로고    scopus 로고
    • Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks
    • Canakci A., Ozsahin S., Varol T. Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks. Powder Technol. 2012, 228:26-35.
    • (2012) Powder Technol. , vol.228 , pp. 26-35
    • Canakci, A.1    Ozsahin, S.2    Varol, T.3
  • 34
    • 79957443608 scopus 로고    scopus 로고
    • Automatic recognition of oil reservoir models from well testing data by using multi-layer perceptron networks
    • Vaferi B., Eslamloueyan R., Ayatollahi S. Automatic recognition of oil reservoir models from well testing data by using multi-layer perceptron networks. J. Petrol. Sci. Eng. 2011, 77:254-262.
    • (2011) J. Petrol. Sci. Eng. , vol.77 , pp. 254-262
    • Vaferi, B.1    Eslamloueyan, R.2    Ayatollahi, S.3
  • 36
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters. SIAM. J. 1963, 11:431-441.
    • (1963) SIAM. J. , vol.11 , pp. 431-441
    • Marquardt, D.W.1
  • 37
    • 79960991869 scopus 로고    scopus 로고
    • Experimental measurement of thermophysical properties of oxide-water nano-fluids down to ice-point
    • Longo G.A., Zilio C. Experimental measurement of thermophysical properties of oxide-water nano-fluids down to ice-point. Exp. Thermal Fluid Sci. 2011, 35:1313-1324.
    • (2011) Exp. Thermal Fluid Sci. , vol.35 , pp. 1313-1324
    • Longo, G.A.1    Zilio, C.2
  • 39
    • 33947722121 scopus 로고    scopus 로고
    • Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
    • Zhang X., Gu H., Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp. Thermal Fluid Sci. 2007, 31:593-599.
    • (2007) Exp. Thermal Fluid Sci. , vol.31 , pp. 593-599
    • Zhang, X.1    Gu, H.2    Fujii, M.3
  • 40
    • 84865023901 scopus 로고    scopus 로고
    • Measurement of the thermal conductivity of titania and alumina nanofluids
    • Yiamsawasd T., Dalkilic A.S., Wongwises S. Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim. Acta 2012, 545:48-56.
    • (2012) Thermochim. Acta , vol.545 , pp. 48-56
    • Yiamsawasd, T.1    Dalkilic, A.S.2    Wongwises, S.3
  • 41
    • 84867743274 scopus 로고    scopus 로고
    • Thermal conductivity and heat transfer of ceramic nanofluids
    • Buschmann M.H. Thermal conductivity and heat transfer of ceramic nanofluids. Int. J. Therm. Sci. 2012, 62:19-28.
    • (2012) Int. J. Therm. Sci. , vol.62 , pp. 19-28
    • Buschmann, M.H.1
  • 42
    • 67650732997 scopus 로고    scopus 로고
    • The effect of particle size on the thermal conductivity of alumina nanofluids
    • Beck M., Yuan Y., Warrier P., Teja A. The effect of particle size on the thermal conductivity of alumina nanofluids. J. Nanoparticle Res. 2009, 11:1129-1136.
    • (2009) J. Nanoparticle Res. , vol.11 , pp. 1129-1136
    • Beck, M.1    Yuan, Y.2    Warrier, P.3    Teja, A.4
  • 43
    • 77955092055 scopus 로고    scopus 로고
    • The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol+water mixtures
    • Beck M., Yuan Y., Warrier P., Teja A. The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol+water mixtures. J. Nanoparticle Res. 2010, 12:1469-1477.
    • (2010) J. Nanoparticle Res. , vol.12 , pp. 1469-1477
    • Beck, M.1    Yuan, Y.2    Warrier, P.3    Teja, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.