메뉴 건너뛰기




Volumn 20, Issue 6, 2016, Pages 2329-2339

Automatic constraints generation for semisupervised clustering: experiences with documents classification

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION RETRIEVAL SYSTEMS;

EID: 84925003036     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-015-1643-3     Document Type: Article
Times cited : (18)

References (24)
  • 1
    • 84949179803 scopus 로고    scopus 로고
    • A survey of text clustering algorithms
    • Springer, US
    • Aggarwal C, Zhai C (2012) A survey of text clustering algorithms. Mining text data. Springer, US, pp 77–128
    • (2012) Mining text data , pp. 77-128
    • Aggarwal, C.1    Zhai, C.2
  • 2
    • 84904657758 scopus 로고    scopus 로고
    • Active clustering with ensembles for social structure extraction. In: Applications of Computer Vision (WACV), 2014 IEEE Winter Conference on
    • Barr J, Cament L, Bowyer K, Flynn P (2014) Active clustering with ensembles for social structure extraction. In: Applications of Computer Vision (WACV), 2014 IEEE Winter Conference on. pp 969–976
    • (2014) pp 969–976
    • Barr, J.1    Cament, L.2    Bowyer, K.3    Flynn, P.4
  • 3
    • 2542567719 scopus 로고    scopus 로고
    • Semi-supervised clustering by seeding. In: Proceedings of the Nineteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco
    • Basu S, Banerjee A, Mooney RJ (2002) Semi-supervised clustering by seeding. In: Proceedings of the Nineteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco, pp 27–34 (ICML ’02)
    • (2002) pp 27–34 (ICML ’02)
    • Basu, S.1    Banerjee, A.2    Mooney, R.J.3
  • 4
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, pp 59–68
    • Basu S, Bilenko M, Mooney RJ (2004) A probabilistic framework for semi-supervised clustering. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, pp 59–68. doi:10.1145/1014052.1014062 (KDD ’04)
    • (2004) doi:10.1145/1014052.1014062 (KDD ’04)
    • Basu, S.1    Bilenko, M.2    Mooney, R.J.3
  • 5
    • 85042972591 scopus 로고    scopus 로고
    • Constrained clustering: advances in algorithms, theory, and applications
    • Chapman &, Hall/CRC
    • Basu S, Davidson I, Wagstaff K (2008) Constrained clustering: advances in algorithms, theory, and applications, 1st edn. Chapman & Hall/CRC
    • (2008) 1st edn
    • Basu, S.1    Davidson, I.2    Wagstaff, K.3
  • 6
    • 0027029929 scopus 로고
    • Scatter/gather: a cluster-based approach to browsing large document collections. In: Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, pp 318–329
    • Cutting DR, Karger DR, Pedersen JO, Tukey JW (1992) Scatter/gather: a cluster-based approach to browsing large document collections. In: Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, pp 318–329. doi: 10.1145/133160.133214 (SIGIR ’92)
    • (1992) doi: 10.1145/133160.133214 (SIGIR ’92)
    • Cutting, D.R.1    Karger, D.R.2    Pedersen, J.O.3    Tukey, J.W.4
  • 7
    • 84886462737 scopus 로고    scopus 로고
    • Using a semisupervised fuzzy clustering process for identity identification in digital libraries. In: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint
    • Diaz-Valenzuela I, Martin-Bautista MJ, Vila MA (2013) Using a semisupervised fuzzy clustering process for identity identification in digital libraries. In: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint. pp 831–836
    • (2013) pp 831–836
    • Diaz-Valenzuela, I.1    Martin-Bautista, M.J.2    Vila, M.A.3
  • 9
    • 84862303635 scopus 로고    scopus 로고
    • Unsupervised and semi-supervised clustering: a brief survey. In: in ‘A Review of Machine Learning Techniques for Processing Multimedia Content’
    • Grira N, Crucianu M, Boujemaa N (2004) Unsupervised and semi-supervised clustering: a brief survey. In: in ‘A Review of Machine Learning Techniques for Processing Multimedia Content’, Report of the MUSCLE European Network of Excellence FP6
    • (2004) Report of the MUSCLE European Network of Excellence FP6
    • Grira, N.1    Crucianu, M.2    Boujemaa, N.3
  • 10
    • 84863579199 scopus 로고    scopus 로고
    • Semi-supervised document clustering with dual supervision through seeding. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing. ACM, New York, pp 144–151
    • Hu Y, Milios EE, Blustein J (2012) Semi-supervised document clustering with dual supervision through seeding. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing. ACM, New York, pp 144–151. doi:10.1145/2245276.2245306 (SAC ’12)
    • (2012) doi:10.1145/2245276.2245306 (SAC ’12)
    • Hu, Y.1    Milios, E.E.2    Blustein, J.3
  • 12
    • 0035755010 scopus 로고    scopus 로고
    • Evaluating document clustering for interactive information retrieval. In: Proceedings of the Tenth International Conference on Information and Knowledge Management. ACM, New York, pp 33–40
    • Leuski A (2001) Evaluating document clustering for interactive information retrieval. In: Proceedings of the Tenth International Conference on Information and Knowledge Management. ACM, New York, pp 33–40, doi:10.1145/502585.502592 (CIKM ’01)
    • (2001) doi:10.1145/502585.502592 (CIKM ’01)
    • Leuski, A.1
  • 14
    • 0142094576 scopus 로고    scopus 로고
    • P-FCM: a proximity-based fuzzy clustering for user-centered web applications
    • Loia V, Pedrycz W, Senatore S (2003) P-FCM: a proximity-based fuzzy clustering for user-centered web applications. Int J Approx Reason 34(2–3):121–144. doi:10.1016/j.ijar.2003.07.004
    • (2003) Int J Approx Reason , vol.34 , Issue.2-3 , pp. 121-144
    • Loia, V.1    Pedrycz, W.2    Senatore, S.3
  • 16
    • 57349117605 scopus 로고    scopus 로고
    • Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In: Proceedings of the 17th International Conference on World Wide Web. ACM, New York, pp 91–100
    • Phan XH, Nguyen LM, Horiguchi S (2008) Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In: Proceedings of the 17th International Conference on World Wide Web. ACM, New York, pp 91–100, doi:10.1145/1367497.1367510 (WWW ’08)
    • (2008) doi:10.1145/1367497.1367510 (WWW ’08)
    • Phan, X.H.1    Nguyen, L.M.2    Horiguchi, S.3
  • 17
    • 33748876433 scopus 로고    scopus 로고
    • Maggini M (2005) A semi-supervised document clustering algorithm based on EM
    • Proceedings. The: IEEE/WIC/ACM International Conference on
    • Rigutini L, Maggini M (2005) A semi-supervised document clustering algorithm based on EM. In: Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM International Conference on. pp 200–206. doi:10.1109/WI.2005.13
    • (2005) Intelligence , vol.2005 , pp. 200-206
    • Rigutini, L.1
  • 18
    • 34547635057 scopus 로고    scopus 로고
    • Incremental hierarchical clustering of text documents. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management. ACM, New York, pp 357–366
    • Sahoo N, Callan J, Krishnan R, Duncan G, Padman R (2006) Incremental hierarchical clustering of text documents. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management. ACM, New York, pp 357–366. doi:10.1145/1183614.1183667 (CIKM ’06)
    • (2006) doi:10.1145/1183614.1183667 (CIKM ’06)
    • Sahoo, N.1    Callan, J.2    Krishnan, R.3    Duncan, G.4    Padman, R.5
  • 19
    • 36849025479 scopus 로고    scopus 로고
    • Enhancing semi-supervised clustering: a feature projection perspective. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York
    • Tang W, Xiong H, Zhong S, Wu J (2007) Enhancing semi-supervised clustering: a feature projection perspective. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, pp 707–716 (KDD ’07)
    • (2007) pp 707–716 (KDD ’07)
    • Tang, W.1    Xiong, H.2    Zhong, S.3    Wu, J.4
  • 20
    • 0001898293 scopus 로고    scopus 로고
    • Clustering with instance-level constraints. In: Proceedings of the Seventeenth International Conference on Machine Learning
    • Wagstaff K, Cardie C (2000) Clustering with instance-level constraints. In: Proceedings of the Seventeenth International Conference on Machine Learning. pp 1103–1110
    • (2000) pp 1103–1110
    • Wagstaff, K.1    Cardie, C.2
  • 21
    • 0042377235 scopus 로고    scopus 로고
    • Constrained k-means clustering with background knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco
    • Wagstaff K, Cardie C, Rogers S, Schrödl S (2001) Constrained k-means clustering with background knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco, pp 577–584 (ICML ’01)
    • (2001) pp 577–584 (ICML ’01)
    • Wagstaff, K.1    Cardie, C.2    Rogers, S.3    Schrödl, S.4
  • 22
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side-information
    • Xing EP, Ng AY, Jordan MI, Russell S (2002) Distance metric learning, with application to clustering with side-information. In: Advances in Neural Information Processing Systems 15, vol 15. pp 505–512. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.3667
    • (2002) Advances in Neural Information Processing Systems 15 , vol.15 , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 23
    • 84890402928 scopus 로고    scopus 로고
    • Active learning of constraints for semi-supervised clustering
    • Xiong S, Azimi J, Fern X (2014) Active learning of constraints for semi-supervised clustering. Knowl Data Eng IEEE Trans 26(1):43–54
    • (2014) Knowl Data Eng IEEE Trans , vol.26 , Issue.1 , pp. 43-54
    • Xiong, S.1    Azimi, J.2    Fern, X.3
  • 24
    • 84856719776 scopus 로고    scopus 로고
    • Effective semi-supervised document clustering via active learning with instance-level constraints
    • Zhao W, He Q, Ma H, Shi Z (2012) Effective semi-supervised document clustering via active learning with instance-level constraints. Knowl Inf Syst 30(3):569–587. doi:10.1007/s10115-011-0389-1
    • (2012) Knowl Inf Syst , vol.30 , Issue.3 , pp. 569-587
    • Zhao, W.1    He, Q.2    Ma, H.3    Shi, Z.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.