메뉴 건너뛰기




Volumn 43, Issue 2, 2015, Pages 546-591

Substitution principle for CLT of linear spectral statistics of high-dimensional sample covariance matrices with applications to hypothesis testing

Author keywords

CLT for linear spectral statistics; High dimensional data; High dimensional sample covariance matrix; Large Fisher matrix; Substitution principle; Testing on high dimensional covariance matrix; Unbiased sample covariance matrix

Indexed keywords


EID: 84924959589     PISSN: 00905364     EISSN: 21688966     Source Type: Journal    
DOI: 10.1214/14-AOS1292     Document Type: Article
Times cited : (92)

References (23)
  • 1
    • 73949135723 scopus 로고    scopus 로고
    • Corrections to LRT on largedimensional covariance matrix by RMT
    • MR2572444
    • BAI, Z., JIANG, D., YAO, J.-F. and ZHENG, S. (2009). Corrections to LRT on largedimensional covariance matrix by RMT. Ann. Statist. 37 3822-3840. MR2572444
    • (2009) Ann. Statist , vol.37 , pp. 3822-3840
    • Bai, Z.1    Jiang, D.2    Yao, J.-F.3    Zheng, S.4
  • 2
    • 84884943863 scopus 로고    scopus 로고
    • Testing linear hypotheses in highdimensional regressions
    • MR3175743
    • BAI, Z., JIANG, D., YAO, J.-F. and ZHENG, S. (2013). Testing linear hypotheses in highdimensional regressions. Statistics 47 1207-1223. MR3175743
    • (2013) Statistics , vol.47 , pp. 1207-1223
    • Bai, Z.1    Jiang, D.2    Yao, J.-F.3    Zheng, S.4
  • 4
    • 22044453079 scopus 로고    scopus 로고
    • No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices
    • MR1617051
    • BAI, Z. D. and SILVERSTEIN, J. W. (1998). No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab. 26 316-345. MR1617051
    • (1998) Ann. Probab , vol.26 , pp. 316-345
    • Bai, Z.D.1    Silverstein, J.W.2
  • 5
    • 2142823889 scopus 로고    scopus 로고
    • CLT for linear spectral statistics of largedimensional sample covariance matrices
    • MR2040792
    • BAI, Z. D. and SILVERSTEIN, J. W. (2004). CLT for linear spectral statistics of largedimensional sample covariance matrices. Ann. Probab. 32 553-605. MR2040792
    • (2004) Ann. Probab , vol.32 , pp. 553-605
    • Bai, Z.D.1    Silverstein, J.W.2
  • 6
    • 0038984150 scopus 로고
    • On limiting empirical distribution function of the eigenvalues of a multivariate F matrix
    • BAI, Z. D., YIN, Y. Q. and KRISHNAIAH, P. R. (1987). On limiting empirical distribution function of the eigenvalues of a multivariate F matrix. Theory Probab. Appl. 32 537-548.
    • (1987) Theory Probab. Appl , vol.32 , pp. 537-548
    • Bai, Z.D.1    Yin, Y.Q.2    Krishnaiah, P.R.3
  • 7
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • MR2485008
    • BICKEL, P. J. and LEVINA, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36 2577-2604. MR2485008
    • (2008) Ann. Statist , vol.36 , pp. 2577-2604
    • Bickel, P.J.1    Levina, E.2
  • 8
    • 41549106844 scopus 로고    scopus 로고
    • Regularized estimation of large covariance matrices
    • MR2387969
    • BICKEL, P. J. and LEVINA, E. (2008). Regularized estimation of large covariance matrices. Ann. Statist. 36 199-227. MR2387969
    • (2008) Ann. Statist , vol.36 , pp. 199-227
    • Bickel, P.J.1    Levina, E.2
  • 9
    • 23944490887 scopus 로고    scopus 로고
    • A note on testing the covariance matrix for large dimension
    • MR2189467
    • BIRKE, M. andDETTE, H. (2005). A note on testing the covariance matrix for large dimension. Statist. Probab. Lett. 74 281-289. MR2189467
    • (2005) Statist. Probab. Lett , vol.74 , pp. 281-289
    • Birke, M.1    Dette, H.2
  • 10
    • 79960133776 scopus 로고    scopus 로고
    • Adaptive thresholding for sparse covariance matrix estimation
    • MR2847949
    • CAI, T. and LIU, W. (2011). Adaptive thresholding for sparse covariance matrix estimation. J. Amer. Statist. Assoc. 106 672-684. MR2847949
    • (2011) J. Amer. Statist. Assoc , vol.106 , pp. 672-684
    • Cai, T.1    Liu, W.2
  • 11
    • 84891912530 scopus 로고    scopus 로고
    • Optimal hypothesis testing for high dimensional covariance matrices
    • MR3160557
    • CAI, T. T. and MA, Z. (2013). Optimal hypothesis testing for high dimensional covariance matrices. Bernoulli 19 2359-2388. MR3160557
    • (2013) Bernoulli , vol.19 , pp. 2359-2388
    • Cai, T.T.1    Ma, Z.2
  • 12
    • 78649411926 scopus 로고    scopus 로고
    • Tests for high-dimensional covariance matrices
    • MR2724863
    • CHEN, S. X., ZHANG, L.-X. and ZHONG, P.-S. (2010). Tests for high-dimensional covariance matrices. J. Amer. Statist. Assoc. 105 810-819. MR2724863
    • (2010) J. Amer. Statist. Assoc , vol.105 , pp. 810-819
    • Chen, S.X.1    Zhang, L.-X.2    Zhong, P.-S.3
  • 13
    • 79961039847 scopus 로고    scopus 로고
    • High dimensional statistical inference and random matrices
    • Eur. Math. Soc., Zürich. MR2334195
    • JOHNSTONE, I. M. (2007). High dimensional statistical inference and random matrices. In International Congress of Mathematicians. Vol. I 307-333. Eur. Math. Soc., Zürich. MR2334195
    • (2007) International Congress of Mathematicians , vol.1 , pp. 307-333
    • Johnstone, I.M.1
  • 14
    • 0036392431 scopus 로고    scopus 로고
    • Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size
    • MR1926169
    • LEDOIT, O. andWOLF, M. (2002). Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann. Statist. 30 1081-1102. MR1926169
    • (2002) Ann. Statist , vol.30 , pp. 1081-1102
    • Ledoit, O.1    Wolf, M.2
  • 15
    • 84871930256 scopus 로고    scopus 로고
    • Two sample tests for high-dimensional covariance matrices
    • MR2985938
    • LI, J. and CHEN, S. X. (2012). Two sample tests for high-dimensional covariance matrices. Ann. Statist. 40 908-940. MR2985938
    • (2012) Ann. Statist , vol.40 , pp. 908-940
    • Li, J.1    Chen, S.X.2
  • 16
    • 77149139140 scopus 로고    scopus 로고
    • Central limit theorem for linear eigenvalue statistics of random matrices with independent entries
    • MR2561434
    • LYTOVA, A. and PASTUR, L. (2009). Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37 1778-1840. MR2561434
    • (2009) Ann. Probab , vol.37 , pp. 1778-1840
    • Lytova, A.1    Pastur, L.2
  • 17
    • 84898626968 scopus 로고    scopus 로고
    • Comparison between two types of large sample covariance matrices
    • MR3189088
    • PAN, G. (2014). Comparison between two types of large sample covariance matrices. Ann. Inst. Henri Poincaré Probab. Stat. 50 655-677. MR3189088
    • (2014) Ann. Inst. Henri Poincaré Probab. Stat , vol.50 , pp. 655-677
    • Pan, G.1
  • 18
    • 52949113042 scopus 로고    scopus 로고
    • Central limit theorem for signal-to-interference ratio of reduced rank linear receiver
    • MR2418244
    • PAN, G. M. and ZHOU, W. (2008). Central limit theorem for signal-to-interference ratio of reduced rank linear receiver. Ann. Appl. Probab. 18 1232-1270. MR2418244
    • (2008) Ann. Appl. Probab , vol.18 , pp. 1232-1270
    • Pan, G.M.1    Zhou, W.2
  • 19
    • 0002627253 scopus 로고
    • Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices
    • MR1370408
    • SILVERSTEIN, J. W. (1995). Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices. J. Multivariate Anal. 55 331-339. MR1370408
    • (1995) J. Multivariate Anal , vol.55 , pp. 331-339
    • Silverstein, J.W.1
  • 20
    • 33748417779 scopus 로고    scopus 로고
    • Some tests concerning the covariance matrix in high dimensional data
    • MR2328427
    • SRIVASTAVA, M. S. (2005). Some tests concerning the covariance matrix in high dimensional data. J. Japan Statist. Soc. 35 251-272. MR2328427
    • (2005) J. Japan Statist. Soc , vol.35 , pp. 251-272
    • Srivastava, M.S.1
  • 21
    • 79954642379 scopus 로고    scopus 로고
    • Some tests for the covariance matrix with fewer observations than the dimension under non-normality
    • MR2793878
    • SRIVASTAVA, M. S., KOLLO, T. and VON ROSEN, D. (2011). Some tests for the covariance matrix with fewer observations than the dimension under non-normality. J. Multivariate Anal. 102 1090-1103. MR2793878
    • (2011) J. Multivariate Anal , vol.102 , pp. 1090-1103
    • Srivastava, M.S.1    Kollo, T.2    Von Rosen, D.3
  • 22
    • 84884942640 scopus 로고    scopus 로고
    • On the sphericity test with large-dimensional observations
    • MR3104916
    • WANG, Q. and YAO, J. (2013). On the sphericity test with large-dimensional observations. Electron. J. Stat. 7 2164-2192. MR3104916
    • (2013) Electron. J. Stat , vol.7 , pp. 2164-2192
    • Wang, Q.1    Yao, J.2
  • 23
    • 84871929900 scopus 로고    scopus 로고
    • Central limit theorems for linear spectral statistics of large dimensional F-matrices
    • MR2954263
    • ZHENG, S. (2012). Central limit theorems for linear spectral statistics of large dimensional F-matrices. Ann. Inst. Henri Poincaré Probab. Stat. 48 444-476. MR2954263
    • (2012) Ann. Inst. Henri Poincaré Probab. Stat , vol.48 , pp. 444-476
    • Zheng, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.