-
1
-
-
0001677717
-
Controlling the false discovery rate: a practical and powerful approach to multiple testing
-
Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 1995, 57:289-300.
-
(1995)
J. Roy. Statist. Soc. Ser. B
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
2
-
-
0002726349
-
Bootstrap tests and confidence regions for functions of a covariance matrix
-
Beran R., Srivastava M.S. Bootstrap tests and confidence regions for functions of a covariance matrix. Ann. Statist. 1985, 13:95-115.
-
(1985)
Ann. Statist.
, vol.13
, pp. 95-115
-
-
Beran, R.1
Srivastava, M.S.2
-
3
-
-
34447558893
-
Monotonicity of the power functions of the modified likelihood ratio criteria for the homogeneity of variances and of the sphericity test
-
Carter E.M., Srivastava M.S. Monotonicity of the power functions of the modified likelihood ratio criteria for the homogeneity of variances and of the sphericity test. J. Multivariate Anal. 1977, 7:229-233.
-
(1977)
J. Multivariate Anal.
, vol.7
, pp. 229-233
-
-
Carter, E.M.1
Srivastava, M.S.2
-
4
-
-
26844531673
-
Comparison of powers for the sphericity test using both the asymptotic distribution and the bootstrap
-
Chan Y.M., Srivastava M.S. Comparison of powers for the sphericity test using both the asymptotic distribution and the bootstrap. Commun. Stat. 1988, 17:671-690.
-
(1988)
Commun. Stat.
, vol.17
, pp. 671-690
-
-
Chan, Y.M.1
Srivastava, M.S.2
-
5
-
-
0007088778
-
Properties of power functions of some tests concerning dispersion matrices of multivariate normal distributions
-
DasGupta S. Properties of power functions of some tests concerning dispersion matrices of multivariate normal distributions. Ann. Math. Statist. 1969, 40:697-701.
-
(1969)
Ann. Math. Statist.
, vol.40
, pp. 697-701
-
-
DasGupta, S.1
-
6
-
-
0041611613
-
Some optimal multivariate tests
-
John S. Some optimal multivariate tests. Biometrika 1971, 58:123-127.
-
(1971)
Biometrika
, vol.58
, pp. 123-127
-
-
John, S.1
-
7
-
-
0001967458
-
Some limit theorems for the eigenvalues of a sample covariance matrix
-
Jonsson D. Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal. 1982, 12:1-38.
-
(1982)
J. Multivariate Anal.
, vol.12
, pp. 1-38
-
-
Jonsson, D.1
-
8
-
-
0036392431
-
Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size
-
Ledoit O., Wolf M. Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann. Statist. 2002, 30:1081-1102.
-
(2002)
Ann. Statist.
, vol.30
, pp. 1081-1102
-
-
Ledoit, O.1
Wolf, M.2
-
9
-
-
84972506622
-
Monotonicity of the modified likelihood ratio test for a covariance matrix
-
Nagao H. Monotonicity of the modified likelihood ratio test for a covariance matrix. J. Sci. Hiroshima Univ. Ser. A-I 1967, 31:147-150.
-
(1967)
J. Sci. Hiroshima Univ. Ser. A-I
, vol.31
, pp. 147-150
-
-
Nagao, H.1
-
10
-
-
84972494060
-
Asymptotic expansions of some test criteria for homogeneity of variances and covariance matrices from normal populations
-
Nagao H. Asymptotic expansions of some test criteria for homogeneity of variances and covariance matrices from normal populations. J. Sci. Hiroshima Univ. Ser. A-I 1970, 34:153-247.
-
(1970)
J. Sci. Hiroshima Univ. Ser. A-I
, vol.34
, pp. 153-247
-
-
Nagao, H.1
-
11
-
-
0000029216
-
On some test criteria for covariance matrix
-
Nagao H. On some test criteria for covariance matrix. Ann. Math. Statist. 1973, 1:700-709.
-
(1973)
Ann. Math. Statist.
, vol.1
, pp. 700-709
-
-
Nagao, H.1
-
12
-
-
38249008276
-
On the distribution of some test criteria for a covariance matrix under local alternatives and bootstrap approximations
-
Nagao H., Srivastava M.S. On the distribution of some test criteria for a covariance matrix under local alternatives and bootstrap approximations. J. Multivariate Anal. 1992, 43:331-350.
-
(1992)
J. Multivariate Anal.
, vol.43
, pp. 331-350
-
-
Nagao, H.1
Srivastava, M.S.2
-
13
-
-
0002394561
-
Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation
-
Rao C.R. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Math. Proc. Cambridge Philos. Soc. 1948, 44:50-57.
-
(1948)
Math. Proc. Cambridge Philos. Soc.
, vol.44
, pp. 50-57
-
-
Rao, C.R.1
-
14
-
-
27944479075
-
Testing for complete independence in high dimensions
-
Schott J.R. Testing for complete independence in high dimensions. Biometrika 2005, 92:951-956.
-
(2005)
Biometrika
, vol.92
, pp. 951-956
-
-
Schott, J.R.1
-
16
-
-
33748417779
-
Some tests concerning the covariance matrix in high-dimensional data
-
Srivastava M.S. Some tests concerning the covariance matrix in high-dimensional data. J. Japan Statist. Soc. 2005, 35:251-272.
-
(2005)
J. Japan Statist. Soc.
, vol.35
, pp. 251-272
-
-
Srivastava, M.S.1
-
17
-
-
54049154435
-
Some tests criteria for the covariance matrix with fewer observations than the dimension
-
Srivastava M.S. Some tests criteria for the covariance matrix with fewer observations than the dimension. Acta Comment. Univ. Tartu. Math. 2006, 10:77-93.
-
(2006)
Acta Comment. Univ. Tartu. Math.
, vol.10
, pp. 77-93
-
-
Srivastava, M.S.1
-
18
-
-
79954860307
-
A review of multivariate theory for high dimensional data with fewer observations
-
World Scientific Publishing Co. Pte. Ltd., Singapore, A. Sengupta (Ed.)
-
Srivastava M.S. A review of multivariate theory for high dimensional data with fewer observations. Advances in Multivariate Statistical Methods 2009, 25-51. World Scientific Publishing Co. Pte. Ltd., Singapore. A. Sengupta (Ed.).
-
(2009)
Advances in Multivariate Statistical Methods
, pp. 25-51
-
-
Srivastava, M.S.1
-
20
-
-
30244441868
-
Locally best invariant test for sphericity and the limiting distributions
-
Sugiura N. Locally best invariant test for sphericity and the limiting distributions. Ann. Math. Statist. 1972, 43:1312-1316.
-
(1972)
Ann. Math. Statist.
, vol.43
, pp. 1312-1316
-
-
Sugiura, N.1
|