메뉴 건너뛰기




Volumn 54, Issue 1, 2015, Pages 28-36

Assessment of water quality index using cluster analysis and artificial neural network modeling: a case study of the Hooghly River basin, West Bengal, India

Author keywords

ANN model; CCME method; Cluster analysis; DELPHI process; River Hooghly; Water quality index

Indexed keywords


EID: 84924611939     PISSN: 19443994     EISSN: 19443986     Source Type: Journal    
DOI: 10.1080/19443994.2014.880379     Document Type: Article
Times cited : (29)

References (36)
  • 3
    • 0142244260 scopus 로고    scopus 로고
    • Development of an overall index of pollution for surface water based on a general classification scheme in Indian context
    • A. Sargaonkar, V. Deshpande, Development of an overall index of pollution for surface water based on a general classification scheme in Indian context, Environ. Monit. Assess. 89 (2003) 43–67.10.1023/A:1025886025137
    • (2003) Environ. Monit. Assess. , vol.89 , pp. 43-67
    • Sargaonkar, A.1    Deshpande, V.2
  • 5
    • 33751226645 scopus 로고    scopus 로고
    • A water quality index applied to an international shared river basin: The case of the Douro river
    • A. Adriano, A. Bordalo, T. Rita, J. William, A water quality index applied to an international shared river basin: The case of the Douro river, Environ. Monit. Assess. 38(6) (2006) 910–920.10.1007/s00267-004-0037-6
    • (2006) Environ. Monit. Assess. , vol.38 , Issue.6 , pp. 910-920
    • Adriano, A.1    Bordalo, A.2    Rita, T.3    William, J.4
  • 6
    • 33846555268 scopus 로고    scopus 로고
    • Development of a water quality index based on a European classification scheme
    • H. Boyacioglu, Development of a water quality index based on a European classification scheme, Water S. Aust. 33 (2007) 101–106.
    • (2007) Water S. Aust. , vol.33 , pp. 101-106
    • Boyacioglu, H.1
  • 9
    • 0034257062 scopus 로고    scopus 로고
    • Use of water quality indices to verify the impact of Córdoba city (Argentina) on Suquía river
    • S.F. Pesce, D.A. Wunderlin, Use of water quality indices to verify the impact of Córdoba city (Argentina) on Suquía river, Water Res. 34 (2000) 2915–2926.10.1016/S0043-1354(00)00036-1
    • (2000) Water Res. , vol.34 , pp. 2915-2926
    • Pesce, S.F.1    Wunderlin, D.A.2
  • 10
    • 33846571268 scopus 로고    scopus 로고
    • Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution
    • E. Sánchez, M.F. Colmenarejo, J. Vicente, A. Rubio, M.G. García, L. Travieso, R. Borja, Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution, Ecol. Indic. 7 (2007) 315–328.10.1016/j.ecolind.2006.02.005
    • (2007) Ecol. Indic. , vol.7 , pp. 315-328
    • Sánchez, E.1    Colmenarejo, M.F.2    Vicente, J.3    Rubio, A.4    García, M.G.5    Travieso, L.6    Borja, R.7
  • 11
    • 4544340267 scopus 로고    scopus 로고
    • Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti river (India)—A case study
    • K.P. Singh, A. Malik, D. Mohan, S. Sinha, Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti river (India)—A case study, Water Res. 38 (2004) 3980–3992.10.1016/j.watres.2004.06.011
    • (2004) Water Res. , vol.38 , pp. 3980-3992
    • Singh, K.P.1    Malik, A.2    Mohan, D.3    Sinha, S.4
  • 12
    • 0011961478 scopus 로고    scopus 로고
    • Water quality index of some Indian rivers
    • R.K. Singh, H. Anandh, Water quality index of some Indian rivers, Indian J. Environ. Health 8 (1996) 21–34.
    • (1996) Indian J. Environ. Health , vol.8 , pp. 21-34
    • Singh, R.K.1    Anandh, H.2
  • 13
    • 33646583198 scopus 로고    scopus 로고
    • Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence
    • D.A. Bennetts, J.A. Webb, D.J.M. Stone, D.M. Hill, Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence, J. Hydrol. 323 (2006) 178–192.10.1016/j.jhydrol.2005.08.023
    • (2006) J. Hydrol. , vol.323 , pp. 178-192
    • Bennetts, D.A.1    Webb, J.A.2    Stone, D.J.M.3    Hill, D.M.4
  • 15
    • 84859133601 scopus 로고    scopus 로고
    • Evaluation of water quality index for drinking purposes of river Subernarekha in Singhbhum district
    • K. Parmar, V. Parmar, Evaluation of water quality index for drinking purposes of river Subernarekha in Singhbhum district, Int. J. Environ. Sci. 1 (2010) 77–81.
    • (2010) Int. J. Environ. Sci. , vol.1 , pp. 77-81
    • Parmar, K.1    Parmar, V.2
  • 16
    • 0035077812 scopus 로고    scopus 로고
    • Oregon water quality index: A tool for evaluating water quality management effectiveness
    • C. Cude, Oregon water quality index: A tool for evaluating water quality management effectiveness, J. Am. Water Resour. Assoc. 37 (2001) 125–137.10.1111/jawr.2001.37.issue-1
    • (2001) J. Am. Water Resour. Assoc. , vol.37 , pp. 125-137
    • Cude, C.1
  • 17
    • 33646145777 scopus 로고    scopus 로고
    • Trend of water quality of river Ganga at Varanasi using WQI approach
    • M. Pandey, S.M. Sundaram, Trend of water quality of river Ganga at Varanasi using WQI approach, Int. J. Ecol. Environ. Sci. 28 (2002) 139–142.
    • (2002) Int. J. Ecol. Environ. Sci. , vol.28 , pp. 139-142
    • Pandey, M.1    Sundaram, S.M.2
  • 18
    • 0346816408 scopus 로고    scopus 로고
    • Canadian water quality guidelines for the protection of aquatic life: CCME water quality index 1.0, technical report
    • Winnipeg: Canadian Council of Ministers of the Environment
    • Canadian Council of Ministers of the Environment (CCME) (2001), Canadian water quality guidelines for the protection of aquatic life: CCME water quality index 1.0, technical report, in: Canadian Environmental Quality Guidelines, 1999. Winnipeg: Canadian Council of Ministers of the Environment. http://www.ccme.ca/assets/pdf/wqi_techrprtfctsht_e.pdf.
    • (2001) Canadian Environmental Quality Guidelines, 1999
  • 20
    • 41849108426 scopus 로고    scopus 로고
    • Assessment of water quality of Tolly’s Nullah by water quality index (WQI)
    • P. Saha, P.K. Banerjee, S. Datta, Assessment of water quality of Tolly’s Nullah by water quality index (WQI), J. Inst. Eng. 88 (2007) 3–9.
    • (2007) J. Inst. Eng. , vol.88 , pp. 3-9
    • Saha, P.1    Banerjee, P.K.2    Datta, S.3
  • 21
    • 84924593065 scopus 로고
    • Consumers water quality index
    • T.M. Walsk, F.L. Parker, Consumers water quality index, J. Environ. 5 (1974) 93–611.
    • (1974) J. Environ. , vol.5 , pp. 93-611
    • Walsk, T.M.1    Parker, F.L.2
  • 22
    • 0033992165 scopus 로고    scopus 로고
    • Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis
    • B. Helena, R. Pardo, M. Vega, E. Barrado, J.M. Fernandez, L. Fernandez, Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis, Water Res. 34 (2000) 807–816.10.1016/S0043-1354(99)00225-0
    • (2000) Water Res. , vol.34 , pp. 807-816
    • Helena, B.1    Pardo, R.2    Vega, M.3    Barrado, E.4    Fernandez, J.M.5    Fernandez, L.6
  • 23
    • 0036261927 scopus 로고    scopus 로고
    • The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India
    • R. Reghunath, T.R.S. Murthy, B.R. Raghavan, The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India, Water Res. 36 (2002) 2437–2442.10.1016/S0043-1354(01)00490-0
    • (2002) Water Res. , vol.36 , pp. 2437-2442
    • Reghunath, R.1    Murthy, T.R.S.2    Raghavan, B.R.3
  • 24
    • 17844369581 scopus 로고    scopus 로고
    • Water quality study of the Struma river basin, Bulgaria
    • P. Simeonova, V. Simeonov, G. Andreev, Water quality study of the Struma river basin, Bulgaria, Cent. Eur. J. Chem. 1(2) (2003) 121–136.10.2478/BF02479264
    • (2003) Cent. Eur. J. Chem. , vol.1 , Issue.2 , pp. 121-136
    • Simeonova, P.1    Simeonov, V.2    Andreev, G.3
  • 26
    • 33750477712 scopus 로고    scopus 로고
    • Chemometric quality assessment of surface waters two case studies
    • V. Simeonov, P. Simeonova, R. Tsitouridou, Chemometric quality assessment of surface waters two case studies, Chem. Eng. Ecol. 11 (2004) 449–469.
    • (2004) Chem. Eng. Ecol. , vol.11 , pp. 449-469
    • Simeonov, V.1    Simeonova, P.2    Tsitouridou, R.3
  • 27
    • 0031734921 scopus 로고    scopus 로고
    • Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis
    • M. Vega, R. Pardo, E. Barrado, L. Deban, Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis, Water Res. 32 (1998) 3581–3592.10.1016/S0043-1354(98)00138-9
    • (1998) Water Res. , vol.32 , pp. 3581-3592
    • Vega, M.1    Pardo, R.2    Barrado, E.3    Deban, L.4
  • 29
    • 0027705107 scopus 로고
    • Climate zones of the conterminous United States defined using cluster analysis
    • R. Fovell, M.Y. Fovell, Climate zones of the conterminous United States defined using cluster analysis, J. Clim. 6 (1993) 2103–2135.10.1175/1520-0442(1993)006<2103:CZOTCU>2.0.CO;2
    • (1993) J. Clim. , vol.6 , pp. 2103-2135
    • Fovell, R.1    Fovell, M.Y.2
  • 30
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Nature 323 (1986) 533–536.10.1038/323533a0
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 31
    • 84857690914 scopus 로고    scopus 로고
    • Modeling adsorption of sodium dodecyl benzene sulfonate (SDBS) onto polyaniline (PANI) by using multi linear regression and artificial neural networks
    • U. Özdemir, B. Özbay, S. Veli, S. Zor, Modeling adsorption of sodium dodecyl benzene sulfonate (SDBS) onto polyaniline (PANI) by using multi linear regression and artificial neural networks, Chem. Eng. J. 178 (2011) 183–190.10.1016/j.cej.2011.10.046
    • (2011) Chem. Eng. J. , vol.178 , pp. 183-190
    • Özdemir, U.1    Özbay, B.2    Veli, S.3    Zor, S.4
  • 32
    • 84856536923 scopus 로고    scopus 로고
    • Comparison of response surface methodology and artificial neural network in predicting the microwave-assisted extraction procedure to determine zinc in fish muscles
    • M.G. Moghaddam, M. Khajeh, Comparison of response surface methodology and artificial neural network in predicting the microwave-assisted extraction procedure to determine zinc in fish muscles, Food Nutr. 2 (2011) 803–808.10.4236/fns.2011.28110
    • (2011) Food Nutr. , vol.2 , pp. 803-808
    • Moghaddam, M.G.1    Khajeh, M.2
  • 33
    • 0035676249 scopus 로고    scopus 로고
    • Applications of machine learning to ecological modeling
    • F. Recknage, Applications of machine learning to ecological modeling, Ecol. Mod. 146 (2011) 303–310.
    • (2011) Ecol. Mod. , vol.146 , pp. 303-310
    • Recknage, F.1
  • 34
    • 84857134951 scopus 로고    scopus 로고
    • Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind
    • K. Sinha, P.D. Saha, S. Datta, Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind, Ind. Crops Prod. 37 (2012) 408–414.10.1016/j.indcrop.2011.12.032
    • (2012) Ind. Crops Prod. , vol.37 , pp. 408-414
    • Sinha, K.1    Saha, P.D.2    Datta, S.3
  • 35
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • A.S. Tokar, A.P. Johnson, Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng. 399 (2011) 232–239.
    • (2011) J. Hydrol. Eng. , vol.399 , pp. 232-239
    • Tokar, A.S.1    Johnson, A.P.2
  • 36
    • 84856514356 scopus 로고    scopus 로고
    • Modelling of lead adsorption from industrial sludge leachate on red mud by using RSM and ANN
    • F. Geyikçi, E. Kılıç, S. Çoruh, S. Elevli, Modelling of lead adsorption from industrial sludge leachate on red mud by using RSM and ANN, Chem. Engg. J. 183 (2012) 53–59.10.1016/j.cej.2011.12.019
    • (2012) Chem. Engg. J. , vol.183 , pp. 53-59
    • Geyikçi, F.1    Kılıç, E.2    Çoruh, S.3    Elevli, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.