메뉴 건너뛰기




Volumn 52, Issue 1, 2016, Pages 5-19

Contextual semantics for sentiment analysis of Twitter

Author keywords

Contextual semantics; Sentiment analysis; Twitter

Indexed keywords

DATA MINING; SEMANTICS;

EID: 84924110504     PISSN: 03064573     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ipm.2015.01.005     Document Type: Article
Times cited : (372)

References (40)
  • 2
    • 84893375204 scopus 로고    scopus 로고
    • Mining wordnet for fuzzy sentiment: Sentiment tag extraction from wordnet glosses
    • Trento, Italy
    • Andreevskaia, A., & Bergler, S. (2006). Mining wordnet for fuzzy sentiment: Sentiment tag extraction from wordnet glosses. In Proceedings of EACL. Trento, Italy.
    • (2006) Proceedings of EACL
    • Andreevskaia, A.1    Bergler, S.2
  • 5
    • 80053418268 scopus 로고    scopus 로고
    • Robust sentiment detection on Twitter from biased and noisy data
    • Beijing, China
    • Barbosa, L., & Feng, J. (2010). Robust sentiment detection on Twitter from biased and noisy data. In Proceedings of COLING. Beijing, China.
    • (2010) Proceedings of COLING
    • Barbosa, L.1    Feng, J.2
  • 6
    • 84897085692 scopus 로고    scopus 로고
    • Entity based sentiment analysis on Twitter
    • S. Batra, D. Rao Entity based sentiment analysis on Twitter Science 2010 1 12
    • (2010) Science , pp. 1-12
    • Batra, S.1    Rao, D.2
  • 7
    • 78951471199 scopus 로고    scopus 로고
    • Sentiment knowledge discovery in Twitter streaming data
    • Canberra, Australia
    • Bifet, A., & Frank, E. (2010). Sentiment knowledge discovery in Twitter streaming data. In Discovery science. Canberra, Australia.
    • (2010) Discovery Science
    • Bifet, A.1    Frank, E.2
  • 9
    • 84864992296 scopus 로고    scopus 로고
    • Senticnet 2: A semantic and affective resource for opinion mining and sentiment analysis
    • Cambria, E., Havasi, C., & Hussain, A. (2012). Senticnet 2: A semantic and affective resource for opinion mining and sentiment analysis. In FLAIRS conference (pp. 202-207).
    • (2012) FLAIRS Conference , pp. 202-207
    • Cambria, E.1    Havasi, C.2    Hussain, A.3
  • 16
    • 85128719106 scopus 로고    scopus 로고
    • Twitter sentiment analysis: The good the bad and the omg!
    • Barcelona, Spain
    • Kouloumpis, E., Wilson, T., & Moore, J. (2011). Twitter sentiment analysis: The good the bad and the omg! In Proceedings of the ICWSM. Barcelona, Spain.
    • (2011) Proceedings of the ICWSM
    • Kouloumpis, E.1    Wilson, T.2    Moore, J.3
  • 21
    • 85028156346 scopus 로고    scopus 로고
    • Twitter as a corpus for sentiment analysis and opinion mining
    • Valletta, Malta
    • Pak, A., & Paroubek, P. (2010). Twitter as a corpus for sentiment analysis and opinion mining. In Proceedings of LREC. Valletta, Malta.
    • (2010) Proceedings of LREC
    • Pak, A.1    Paroubek, P.2
  • 26
    • 84921852110 scopus 로고    scopus 로고
    • Automatic stopword generation using contextual semantics for sentiment analysis of Twitter
    • Trentino, Italy
    • Saif, H., Fernandez, M., & Alani, H. (2014). Automatic stopword generation using contextual semantics for sentiment analysis of Twitter. In The 13th semantic web conference (ISWC). Trentino, Italy.
    • (2014) The 13th Semantic Web Conference (ISWC)
    • Saif, H.1    Fernandez, M.2    Alani, H.3
  • 29
    • 84962333024 scopus 로고    scopus 로고
    • Senticircles for contextual and conceptual semantic sentiment analysis of Twitter
    • (ESWC). Crete, Greece
    • Saif, H., Fernandez, M., He, Y., & Alani, H. (2014). Senticircles for contextual and conceptual semantic sentiment analysis of Twitter. In Proc. 11th extended semantic web conf. (ESWC). Crete, Greece.
    • (2014) Proc. 11th Extended Semantic Web Conf
    • Saif, H.1    Fernandez, M.2    He, Y.3    Alani, H.4
  • 36
    • 2442507763 scopus 로고    scopus 로고
    • Measuring praise and criticism: Inference of semantic orientation from association
    • P. Turney, M. Littman Measuring praise and criticism: Inference of semantic orientation from association ACM Transactions on Information Systems 21 2003 315 346
    • (2003) ACM Transactions on Information Systems , vol.21 , pp. 315-346
    • Turney, P.1    Littman, M.2
  • 37
    • 77952700189 scopus 로고    scopus 로고
    • From frequency to meaning: Vector space models of semantics
    • P.D. Turney, P. Pantel et al. From frequency to meaning: Vector space models of semantics Journal of Artificial Intelligence Research 37 1 2010 141 188
    • (2010) Journal of Artificial Intelligence Research , vol.37 , Issue.1 , pp. 141-188
    • Turney, P.D.1    Pantel, P.2
  • 40
    • 84866504151 scopus 로고    scopus 로고
    • Identifying the semantic orientation of terms using S-HAL for sentiment analysis
    • T. Xu, Q. Peng, Y. Cheng Identifying the semantic orientation of terms using S-HAL for sentiment analysis Knowledge-Based Systems 35 2012 279 289
    • (2012) Knowledge-Based Systems , vol.35 , pp. 279-289
    • Xu, T.1    Peng, Q.2    Cheng, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.