-
1
-
-
49449091081
-
Use of multiple imputation in the epidemiologic literature
-
Klebanoff MA, Cole SR: Use of multiple imputation in the epidemiologic literature. Am J Epidemiol 2008, 168 (4):355-357.
-
(2008)
Am J Epidemiol
, vol.168
, Issue.4
, pp. 355-357
-
-
Klebanoff, M.A.1
Cole, S.R.2
-
2
-
-
0029584587
-
A critical look at methods for handling missing covariates in epidemiologic regression analyses
-
Greenland S, Finkle WD: A critical look at methods for handling missing covariates in epidemiologic regression analyses. Am J Epidemiol 1995, 142(12):1255-1264.
-
(1995)
Am J Epidemiol
, vol.142
, Issue.12
, pp. 1255-1264
-
-
Greenland, S.1
Finkle, W.D.2
-
5
-
-
60549085055
-
Missing data analysis: Making it work in the real world
-
Graham JW: Missing data analysis: making it work in the real world. Annu Rev Psychol 2009, 60: 549-576.
-
(2009)
Annu Rev Psychol
, vol.60
, pp. 549-576
-
-
Graham, J.W.1
-
6
-
-
77249147857
-
Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation
-
Lee KJ, Carlin JB: Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. Am J Epidemiol 2010, 171(5):624-632.
-
(2010)
Am J Epidemiol
, vol.171
, Issue.5
, pp. 624-632
-
-
Lee, K.J.1
Carlin, J.B.2
-
7
-
-
33748520872
-
Review: A gentle introduction to imputation of missing values
-
Donders ART, van der Heijden GJ, Stijnen T, Moons KG: Review: a gentle introduction to imputation of missing values. J Clin Epidemiol 2006, 59(10):1087-1091.
-
(2006)
J Clin Epidemiol
, vol.59
, Issue.10
, pp. 1087-1091
-
-
Donders, A.R.T.1
Van Der Heijden, G.J.2
Stijnen, T.3
Moons, K.G.4
-
8
-
-
0032219074
-
Multiple imputation for multivariate missing-data problems: A data analyst's perspective
-
Schafer JL, Olsen MK: Multiple imputation for multivariate missing-data problems: a data analyst's perspective. Multivariate Behav Res 1998, 33(4):545-571.
-
(1998)
Multivariate Behav Res
, vol.33
, Issue.4
, pp. 545-571
-
-
Schafer, J.L.1
Olsen, M.K.2
-
10
-
-
0035755636
-
A Comparison of Inclusive and Restrictive Strategies in Modern Missing Data Procedures
-
Collins LM, Schafer JL, Kam C-M: A Comparison of Inclusive and Restrictive Strategies in Modern Missing Data Procedures. Psychological Methods 2001, 6:330-351.
-
(2001)
Psychological Methods
, vol.6
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.-M.3
-
11
-
-
0002717645
-
Analysis with missing data in prevention research
-
Washington D.C.: American Psychological Association
-
Graham JW, Hofer SM, Donaldson SI, MacKinnon DP, Schafer JL: Analysis with missing data in prevention research. In The science of prevention: methodological advances from alcohol and substance abuse research. Washington D.C.: American Psychological Association; 1997:325-366.
-
(1997)
The Science of Prevention: Methodological Advances from Alcohol and Substance Abuse Research
, pp. 325-366
-
-
Graham, J.W.1
Hofer, S.M.2
Donaldson, S.I.3
MacKinnon, D.P.4
Schafer, J.L.5
-
12
-
-
0030539070
-
Multiple imputation after 18+ years
-
Rubin DB: Multiple imputation after 18+ years. J Am Stat Assoc 1996, 91(434):473-489.
-
(1996)
J Am Stat Assoc
, vol.91
, Issue.434
, pp. 473-489
-
-
Rubin, D.B.1
-
13
-
-
65249094801
-
Multiple imputation with large data sets: A case study of the Children's Mental Health Initiative
-
Stuart EA, Azur M, Frangakis C, Leaf P: Multiple imputation with large data sets: a case study of the Children's Mental Health Initiative. Am J Epidemiol 2009, 169(9):1133-1139.
-
(2009)
Am J Epidemiol
, vol.169
, Issue.9
, pp. 1133-1139
-
-
Stuart, E.A.1
Azur, M.2
Frangakis, C.3
Leaf, P.4
-
15
-
-
72749115252
-
Development and validation of a prediction model with missing predictor data: A practical approach
-
Vergouwe Y, Royston P, Moons KG, Altman DG: Development and validation of a prediction model with missing predictor data: a practical approach. J Clin Epidemiol 2010, 63(2):205-214.
-
(2010)
J Clin Epidemiol
, vol.63
, Issue.2
, pp. 205-214
-
-
Vergouwe, Y.1
Royston, P.2
Moons, K.G.3
Altman, D.G.4
-
16
-
-
78651256743
-
Multiple imputation using chained equations: Issues and guidance for practice
-
White IR, Royston P, Wood AM: Multiple imputation using chained equations: issues and guidance for practice. Stat Med 2011, 30(4):377-399.
-
(2011)
Stat Med
, vol.30
, Issue.4
, pp. 377-399
-
-
White, I.R.1
Royston, P.2
Wood, A.M.3
-
17
-
-
48249126832
-
How should variable selection be performed with multiply imputed data?
-
Wood AM, White IR, Royston P: How should variable selection be performed with multiply imputed data? Stat Med 2008, 27(17):3227-3246.
-
(2008)
Stat Med
, vol.27
, Issue.17
, pp. 3227-3246
-
-
Wood, A.M.1
White, I.R.2
Royston, P.3
-
18
-
-
84889676299
-
Ambient pollution and respiratory outcomes among schoolchildren in Durban, South Africa
-
Naidoo RN, Robins TG, Batterman S, Mentz G, Jack C: Ambient pollution and respiratory outcomes among schoolchildren in Durban, South Africa. SAJCH 2013, 7(4):127-134.
-
(2013)
SAJCH
, vol.7
, Issue.4
, pp. 127-134
-
-
Naidoo, R.N.1
Robins, T.G.2
Batterman, S.3
Mentz, G.4
Jack, C.5
-
22
-
-
79951982954
-
Multiple imputation by chained equations: What is it and how does it work?
-
Azur MJ, Stuart EA, Frangakis C, Leaf PJ: Multiple imputation by chained equations: what is it and how does it work? Int J Methods Psychiatr Res 2011, 20(1):40-49.
-
(2011)
Int J Methods Psychiatr Res
, vol.20
, Issue.1
, pp. 40-49
-
-
Azur, M.J.1
Stuart, E.A.2
Frangakis, C.3
Leaf, P.J.4
-
23
-
-
0004317657
-
-
Ann Arbor, MI: Survey Methodology Program, Survey Research Center, Institute for Social Research, University of Michigan
-
Raghunathan TE, Solenberger PW, Van Hoewyk J: IVEware: Imputation and variance estimation software. Ann Arbor, MI: Survey Methodology Program, Survey Research Center, Institute for Social Research, University of Michigan; 2002.
-
(2002)
IVEware: Imputation and Variance Estimation Software
-
-
Raghunathan, T.E.1
Solenberger, P.W.2
Van Hoewyk, J.3
-
24
-
-
34548451124
-
How many imputations are really needed? Some practical clarifications of multiple imputation theory
-
Graham JW, Olchowski AE, Gilreath TD: How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci 2007, 8(3):206-213.
-
(2007)
Prev Sci
, vol.8
, Issue.3
, pp. 206-213
-
-
Graham, J.W.1
Olchowski, A.E.2
Gilreath, T.D.3
-
25
-
-
69149105188
-
How to impute interactions, squares, and other transformed variables
-
Von Hippel PT: How to impute interactions, squares, and other transformed variables. Sociol Methodol 2009, 39(1):265-291.
-
(2009)
Sociol Methodol
, vol.39
, Issue.1
, pp. 265-291
-
-
Von Hippel, P.T.1
-
27
-
-
80053484609
-
The use of complete-case and multiple imputation-based analyses in molecular epidemiology studies that assess interaction effects
-
Desai M, Esserman DA, Gammon MD, Terry MB: The use of complete-case and multiple imputation-based analyses in molecular epidemiology studies that assess interaction effects. Epidemiol Perspect Innovat 2011, 8(1):5.
-
(2011)
Epidemiol Perspect Innovat
, vol.8
, Issue.1
, pp. 5
-
-
Desai, M.1
Esserman, D.A.2
Gammon, M.D.3
Terry, M.B.4
-
28
-
-
0003245614
-
On the performance of multiple imputation for multivariate data with small sample size
-
Graham JW, Schafer JL: On the performance of multiple imputation for multivariate data with small sample size. Statistical strategies for small sample research 1999, 50:1-27.
-
(1999)
Statistical Strategies for Small Sample Research
, vol.50
, pp. 1-27
-
-
Graham, J.W.1
Schafer, J.L.2
-
29
-
-
84859108206
-
Imputation methods for missing categorical questionnaire data: A comparison of approaches
-
Finch WH: Imputation methods for missing categorical questionnaire data: a comparison of approaches. J Data Sci 2010, 8(3):361-378.
-
(2010)
J Data Sci
, vol.8
, Issue.3
, pp. 361-378
-
-
Finch, W.H.1
-
30
-
-
84870333136
-
Auxiliary variables in multiple imputation in regression with missing X: A warning against including too many in small sample research
-
Hardt J, Herke M, Leonhart R: Auxiliary variables in multiple imputation in regression with missing X: a warning against including too many in small sample research. BMC Medical Research Methodology 2012, 12(1):184.
-
(2012)
BMC Medical Research Methodology
, vol.12
, Issue.1
, pp. 184
-
-
Hardt, J.1
Herke, M.2
Leonhart, R.3
-
31
-
-
77950876501
-
Missing data analysis using multiple imputation getting to the heart of the matter
-
He Y: Missing data analysis using multiple imputation getting to the heart of the matter. Circ Cardiovasc Qual Outcomes 2010, 3(1):98-105.
-
(2010)
Circ Cardiovasc Qual Outcomes
, vol.3
, Issue.1
, pp. 98-105
-
-
He, Y.1
|