메뉴 건너뛰기




Volumn 14, Issue 1, 2014, Pages

Model development including interactions with multiple imputed data

Author keywords

Interactions; Missing data; Model development; Multiple imputation; Ordinal regression

Indexed keywords

PASSIVE SMOKING;

EID: 84923927427     PISSN: None     EISSN: 14712288     Source Type: Journal    
DOI: 10.1186/1471-2288-14-136     Document Type: Article
Times cited : (5)

References (31)
  • 1
    • 49449091081 scopus 로고    scopus 로고
    • Use of multiple imputation in the epidemiologic literature
    • Klebanoff MA, Cole SR: Use of multiple imputation in the epidemiologic literature. Am J Epidemiol 2008, 168 (4):355-357.
    • (2008) Am J Epidemiol , vol.168 , Issue.4 , pp. 355-357
    • Klebanoff, M.A.1    Cole, S.R.2
  • 2
    • 0029584587 scopus 로고
    • A critical look at methods for handling missing covariates in epidemiologic regression analyses
    • Greenland S, Finkle WD: A critical look at methods for handling missing covariates in epidemiologic regression analyses. Am J Epidemiol 1995, 142(12):1255-1264.
    • (1995) Am J Epidemiol , vol.142 , Issue.12 , pp. 1255-1264
    • Greenland, S.1    Finkle, W.D.2
  • 5
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: Making it work in the real world
    • Graham JW: Missing data analysis: making it work in the real world. Annu Rev Psychol 2009, 60: 549-576.
    • (2009) Annu Rev Psychol , vol.60 , pp. 549-576
    • Graham, J.W.1
  • 6
    • 77249147857 scopus 로고    scopus 로고
    • Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation
    • Lee KJ, Carlin JB: Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. Am J Epidemiol 2010, 171(5):624-632.
    • (2010) Am J Epidemiol , vol.171 , Issue.5 , pp. 624-632
    • Lee, K.J.1    Carlin, J.B.2
  • 8
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing-data problems: A data analyst's perspective
    • Schafer JL, Olsen MK: Multiple imputation for multivariate missing-data problems: a data analyst's perspective. Multivariate Behav Res 1998, 33(4):545-571.
    • (1998) Multivariate Behav Res , vol.33 , Issue.4 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 10
    • 0035755636 scopus 로고    scopus 로고
    • A Comparison of Inclusive and Restrictive Strategies in Modern Missing Data Procedures
    • Collins LM, Schafer JL, Kam C-M: A Comparison of Inclusive and Restrictive Strategies in Modern Missing Data Procedures. Psychological Methods 2001, 6:330-351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 12
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • Rubin DB: Multiple imputation after 18+ years. J Am Stat Assoc 1996, 91(434):473-489.
    • (1996) J Am Stat Assoc , vol.91 , Issue.434 , pp. 473-489
    • Rubin, D.B.1
  • 13
    • 65249094801 scopus 로고    scopus 로고
    • Multiple imputation with large data sets: A case study of the Children's Mental Health Initiative
    • Stuart EA, Azur M, Frangakis C, Leaf P: Multiple imputation with large data sets: a case study of the Children's Mental Health Initiative. Am J Epidemiol 2009, 169(9):1133-1139.
    • (2009) Am J Epidemiol , vol.169 , Issue.9 , pp. 1133-1139
    • Stuart, E.A.1    Azur, M.2    Frangakis, C.3    Leaf, P.4
  • 15
    • 72749115252 scopus 로고    scopus 로고
    • Development and validation of a prediction model with missing predictor data: A practical approach
    • Vergouwe Y, Royston P, Moons KG, Altman DG: Development and validation of a prediction model with missing predictor data: a practical approach. J Clin Epidemiol 2010, 63(2):205-214.
    • (2010) J Clin Epidemiol , vol.63 , Issue.2 , pp. 205-214
    • Vergouwe, Y.1    Royston, P.2    Moons, K.G.3    Altman, D.G.4
  • 16
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: Issues and guidance for practice
    • White IR, Royston P, Wood AM: Multiple imputation using chained equations: issues and guidance for practice. Stat Med 2011, 30(4):377-399.
    • (2011) Stat Med , vol.30 , Issue.4 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 17
    • 48249126832 scopus 로고    scopus 로고
    • How should variable selection be performed with multiply imputed data?
    • Wood AM, White IR, Royston P: How should variable selection be performed with multiply imputed data? Stat Med 2008, 27(17):3227-3246.
    • (2008) Stat Med , vol.27 , Issue.17 , pp. 3227-3246
    • Wood, A.M.1    White, I.R.2    Royston, P.3
  • 18
    • 84889676299 scopus 로고    scopus 로고
    • Ambient pollution and respiratory outcomes among schoolchildren in Durban, South Africa
    • Naidoo RN, Robins TG, Batterman S, Mentz G, Jack C: Ambient pollution and respiratory outcomes among schoolchildren in Durban, South Africa. SAJCH 2013, 7(4):127-134.
    • (2013) SAJCH , vol.7 , Issue.4 , pp. 127-134
    • Naidoo, R.N.1    Robins, T.G.2    Batterman, S.3    Mentz, G.4    Jack, C.5
  • 22
    • 79951982954 scopus 로고    scopus 로고
    • Multiple imputation by chained equations: What is it and how does it work?
    • Azur MJ, Stuart EA, Frangakis C, Leaf PJ: Multiple imputation by chained equations: what is it and how does it work? Int J Methods Psychiatr Res 2011, 20(1):40-49.
    • (2011) Int J Methods Psychiatr Res , vol.20 , Issue.1 , pp. 40-49
    • Azur, M.J.1    Stuart, E.A.2    Frangakis, C.3    Leaf, P.J.4
  • 24
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • Graham JW, Olchowski AE, Gilreath TD: How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci 2007, 8(3):206-213.
    • (2007) Prev Sci , vol.8 , Issue.3 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 25
    • 69149105188 scopus 로고    scopus 로고
    • How to impute interactions, squares, and other transformed variables
    • Von Hippel PT: How to impute interactions, squares, and other transformed variables. Sociol Methodol 2009, 39(1):265-291.
    • (2009) Sociol Methodol , vol.39 , Issue.1 , pp. 265-291
    • Von Hippel, P.T.1
  • 27
    • 80053484609 scopus 로고    scopus 로고
    • The use of complete-case and multiple imputation-based analyses in molecular epidemiology studies that assess interaction effects
    • Desai M, Esserman DA, Gammon MD, Terry MB: The use of complete-case and multiple imputation-based analyses in molecular epidemiology studies that assess interaction effects. Epidemiol Perspect Innovat 2011, 8(1):5.
    • (2011) Epidemiol Perspect Innovat , vol.8 , Issue.1 , pp. 5
    • Desai, M.1    Esserman, D.A.2    Gammon, M.D.3    Terry, M.B.4
  • 28
    • 0003245614 scopus 로고    scopus 로고
    • On the performance of multiple imputation for multivariate data with small sample size
    • Graham JW, Schafer JL: On the performance of multiple imputation for multivariate data with small sample size. Statistical strategies for small sample research 1999, 50:1-27.
    • (1999) Statistical Strategies for Small Sample Research , vol.50 , pp. 1-27
    • Graham, J.W.1    Schafer, J.L.2
  • 29
    • 84859108206 scopus 로고    scopus 로고
    • Imputation methods for missing categorical questionnaire data: A comparison of approaches
    • Finch WH: Imputation methods for missing categorical questionnaire data: a comparison of approaches. J Data Sci 2010, 8(3):361-378.
    • (2010) J Data Sci , vol.8 , Issue.3 , pp. 361-378
    • Finch, W.H.1
  • 30
    • 84870333136 scopus 로고    scopus 로고
    • Auxiliary variables in multiple imputation in regression with missing X: A warning against including too many in small sample research
    • Hardt J, Herke M, Leonhart R: Auxiliary variables in multiple imputation in regression with missing X: a warning against including too many in small sample research. BMC Medical Research Methodology 2012, 12(1):184.
    • (2012) BMC Medical Research Methodology , vol.12 , Issue.1 , pp. 184
    • Hardt, J.1    Herke, M.2    Leonhart, R.3
  • 31
    • 77950876501 scopus 로고    scopus 로고
    • Missing data analysis using multiple imputation getting to the heart of the matter
    • He Y: Missing data analysis using multiple imputation getting to the heart of the matter. Circ Cardiovasc Qual Outcomes 2010, 3(1):98-105.
    • (2010) Circ Cardiovasc Qual Outcomes , vol.3 , Issue.1 , pp. 98-105
    • He, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.