-
3
-
-
54749088234
-
Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts
-
Zhao ZG, Miyauchi M. Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angew Chem Int Ed. 2008;47:7051–5.
-
(2008)
Angew Chem Int Ed
, vol.47
, pp. 7051-7055
-
-
Zhao, Z.G.1
Miyauchi, M.2
-
4
-
-
0035818994
-
Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst
-
Zou Z, Ye J, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature. 2001;414:625–7.
-
(2001)
Nature
, vol.414
, pp. 625-627
-
-
Zou, Z.1
Ye, J.2
Sayama, K.3
Arakawa, H.4
-
5
-
-
41149117499
-
Science and technology for water purification in the coming decades
-
Shanon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM. Science and technology for water purification in the coming decades. Nature. 2008;452:301–10.
-
(2008)
Nature
, vol.452
, pp. 301-310
-
-
Shanon, M.A.1
Bohn, P.W.2
Elimelech, M.3
Georgiadis, J.G.4
Marinas, B.J.5
Mayes, A.M.6
-
6
-
-
33645027408
-
Photocatalyst releasing hydrogen from water
-
Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, et al. Photocatalyst releasing hydrogen from water. Nature. 2006;440:295–5.
-
(2006)
Nature
, vol.440
, pp. 295
-
-
Maeda, K.1
Teramura, K.2
Lu, D.3
Takata, T.4
Saito, N.5
Inoue, Y.6
-
7
-
-
77649210518
-
Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis
-
Zhou H, Li X, Fan T, Osterloh FE, Ding J, Sabio EM, et al. Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis. Adv Mater. 2009;22:951–6.
-
(2009)
Adv Mater
, vol.22
, pp. 951-956
-
-
Zhou, H.1
Li, X.2
Fan, T.3
Osterloh, F.E.4
Ding, J.5
Sabio, E.M.6
-
8
-
-
35648948481
-
Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection
-
Elvington M, Brown J, Arachchige SM, Brewer KJ. Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection. J Am Chem Soc. 2007;129:10644–5.
-
(2007)
J Am Chem Soc
, vol.129
, pp. 10644-10645
-
-
Elvington, M.1
Brown, J.2
Arachchige, S.M.3
Brewer, K.J.4
-
9
-
-
77950142329
-
Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons
-
Roy SC, Varghese OK, Paulose M, Grimes CA. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano. 2010;4:1259–78.
-
(2010)
ACS Nano
, vol.4
, pp. 1259-1278
-
-
Roy, S.C.1
Varghese, O.K.2
Paulose, M.3
Grimes, C.A.4
-
10
-
-
72949117212
-
Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels
-
Morris AJ, Meyer GJ, Fujita E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res. 2009;42:1983–4.
-
(2009)
Acc Chem Res
, vol.42
, pp. 1983-1984
-
-
Morris, A.J.1
Meyer, G.J.2
Fujita, E.3
-
13
-
-
6244304675
-
Photocatalytic degradation of organic water, contaminants: mechanisms involving hydroxyl radical attack
-
Turchi CS, Ollis DF. Photocatalytic degradation of organic water, contaminants: mechanisms involving hydroxyl radical attack. J Catal. 1990;122:178–92.
-
(1990)
J Catal
, vol.122
, pp. 178-192
-
-
Turchi, C.S.1
Ollis, D.F.2
-
14
-
-
33644864983
-
Photocatalytic degradation of phenol in the presence of near-UV illuminated titanium dioxide
-
Mathews RW, MacEvoy SR. Photocatalytic degradation of phenol in the presence of near-UV illuminated titanium dioxide. J Photochem Photobiol A Chem. 1992;64:231–46.
-
(1992)
J Photochem Photobiol A Chem
, vol.64
, pp. 231-246
-
-
Mathews, R.W.1
MacEvoy, S.R.2
-
15
-
-
33847748193
-
Meeting the clean energy demand: nanostructure architectures for solar energy conversion
-
Kamat PV. Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C. 2007;111:2834–60.
-
(2007)
J Phys Chem C
, vol.111
, pp. 2834-2860
-
-
Kamat, P.V.1
-
16
-
-
0034583355
-
Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method
-
Anpo M. Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure Appl Chem. 2000;72:1787–92.
-
(2000)
Pure Appl Chem
, vol.72
, pp. 1787-1792
-
-
Anpo, M.1
-
17
-
-
76749091904
-
Photodegradation of acridine orange catalyzed by nanostructured titanium dioxide modified with platinum and silver metals
-
Qamar M. Photodegradation of acridine orange catalyzed by nanostructured titanium dioxide modified with platinum and silver metals. Desalination. 2010;254:108–13.
-
(2010)
Desalination
, vol.254
, pp. 108-113
-
-
Qamar, M.1
-
18
-
-
0035964574
-
2 semiconductor particulate system using visible light
-
2 semiconductor particulate system using visible light. Appl Catal B Environ. 2001;33:119–25.
-
(2001)
Appl Catal B Environ
, vol.33
, pp. 119-125
-
-
Chatterjee, D.1
Mahata, A.2
-
20
-
-
79952755986
-
2 photocatalyst with high stability and activity: effect of mesoporous substrate and bifunctional linking molecule
-
2 photocatalyst with high stability and activity: effect of mesoporous substrate and bifunctional linking molecule. J Mater Chem. 2011;21:4945–52.
-
(2011)
J Mater Chem
, vol.21
, pp. 4945-4952
-
-
Qian, S.1
Wang, C.2
Liu, W.3
Zhu, Y.4
Yao, W.5
Lu, X.6
-
22
-
-
36149000120
-
3 nanocomposites with enhanced photocatalytic activity
-
3 nanocomposites with enhanced photocatalytic activity. Chem Commun. 2007; 4749–51.
-
(2007)
Chem Commun
, pp. 4749-4751
-
-
Puddu, V.1
Mokaya, R.2
Puma, G.L.3
-
26
-
-
84897806744
-
Photoelectrochemical measurements
-
Roel VDK, Gratzel M, (eds), Springer, Electronic Materials: Science & Technology, New York:
-
Roel VDK. Photoelectrochemical measurements. In: Roel VDK, Gratzel M, editors. Photoelectrochemical hydrogen production. New York: Springer, Electronic Materials: Science & Technology; 2012. p. 69–117.
-
(2012)
Photoelectrochemical hydrogen production
, pp. 69-117
-
-
Roel, V.D.K.1
|