메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages

Membrane curvature sensing by the C-terminal domain of complexin

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEXIN; CYTOPLASM PROTEIN; LIPOSOME; UNCLASSIFIED DRUG; COMPLEXIN I; LIPID; NERVE PROTEIN; PROTEIN BINDING; SNARE PROTEIN; VESICULAR TRANSPORT ADAPTOR PROTEIN;

EID: 84923294025     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms5955     Document Type: Article
Times cited : (65)

References (70)
  • 1
    • 42949109118 scopus 로고    scopus 로고
    • Altered complexin expression in psychiatric and neurological disorders: Cause or consequence?
    • Brose, N. Altered complexin expression in psychiatric and neurological disorders: cause or consequence? Mol. Cells 25, 7-19 (2008).
    • (2008) Mol. Cells , vol.25 , pp. 7-19
    • Brose, N.1
  • 2
    • 49749126732 scopus 로고    scopus 로고
    • For better or for worse: Complexins regulate SNARE function and vesicle fusion
    • Brose, N. For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic 9, 1403-1413 (2008).
    • (2008) Traffic , vol.9 , pp. 1403-1413
    • Brose, N.1
  • 3
    • 79151478184 scopus 로고    scopus 로고
    • Complexin has opposite effects on two modes of synaptic vesicle fusion
    • Martin, J. A., Hu, Z., Fenz, K. M., Fernandez, J. & Dittman, J. S. Complexin has opposite effects on two modes of synaptic vesicle fusion. Curr. Biol. 21, 97-105 (2011).
    • (2011) Curr. Biol. , vol.21 , pp. 97-105
    • Martin, J.A.1    Hu, Z.2    Fenz, K.M.3    Fernandez, J.4    Dittman, J.S.5
  • 4
    • 84872723646 scopus 로고    scopus 로고
    • Synaptic vesicles position complexin to block spontaneous fusion
    • Wragg, R. T. et al. Synaptic vesicles position complexin to block spontaneous fusion. Neuron 77, 323-334 (2013).
    • (2013) Neuron , vol.77 , pp. 323-334
    • Wragg, R.T.1
  • 5
    • 70350772355 scopus 로고    scopus 로고
    • Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila complexins orchestrates synaptic vesicle exocytosis
    • Xue, M. et al. Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila complexins orchestrates synaptic vesicle exocytosis. Neuron 64, 367-380 (2009).
    • (2009) Neuron , vol.64 , pp. 367-380
    • Xue, M.1
  • 6
    • 77957936989 scopus 로고    scopus 로고
    • Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release
    • Cho, R. W., Song, Y. & Littleton, J. T. Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release. Mol. Cell. Neurosci. 45, 389-397 (2010).
    • (2010) Mol. Cell. Neurosci. , vol.45 , pp. 389-397
    • Cho, R.W.1    Song, Y.2    Littleton, J.T.3
  • 7
    • 79151479103 scopus 로고    scopus 로고
    • Complexin maintains vesicles in the primed state in C. Elegans
    • Hobson, R. J., Liu, Q., Watanabe, S. & Jorgensen, E. M. Complexin maintains vesicles in the primed state in C. elegans. Curr. Biol. 21, 106-113 (2011).
    • (2011) Curr. Biol. , vol.21 , pp. 106-113
    • Hobson, R.J.1    Liu, Q.2    Watanabe, S.3    Jorgensen, E.M.4
  • 8
    • 34748846347 scopus 로고    scopus 로고
    • A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth
    • Huntwork, S. & Littleton, J. T. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci. 10, 1235-1237 (2007).
    • (2007) Nat. Neurosci. , vol.10 , pp. 1235-1237
    • Huntwork, S.1    Littleton, J.T.2
  • 10
    • 58849164361 scopus 로고    scopus 로고
    • Complexin controls the force transfer from SNARE complexes to membranes in fusion
    • Maximov, A., Tang, J., Yang, X., Pang, Z. P. & Südhof, T. C. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323, 516-521 (2009).
    • (2009) Science , vol.323 , pp. 516-521
    • Maximov, A.1    Tang, J.2    Yang, X.3    Pang, Z.P.4    Südhof, T.C.5
  • 11
    • 46449139821 scopus 로고    scopus 로고
    • 2+ stimulate SNARE-mediated membrane fusion
    • 2+ stimulate SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 15, 707-713 (2008).
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 707-713
    • Yoon, T.-Y.1
  • 12
    • 45549089944 scopus 로고    scopus 로고
    • Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system
    • Xue, M. et al. Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system. Proc. Natl Acad. Sci. USA 105, 7875 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 7875
    • Xue, M.1
  • 13
    • 33746319639 scopus 로고    scopus 로고
    • A clamping mechanism involved in SNARE-dependent exocytosis
    • Giraudo, C. G., Eng, W. S., Melia, T. J. & Rothman, J. E. A clamping mechanism involved in SNARE-dependent exocytosis. Science 313, 676-680 (2006).
    • (2006) Science , vol.313 , pp. 676-680
    • Giraudo, C.G.1    Eng, W.S.2    Melia, T.J.3    Rothman, J.E.4
  • 14
    • 60749096805 scopus 로고    scopus 로고
    • Concurrent binding of complexin and synaptotagmin to liposome-embedded SNARE complexes
    • Chicka, M. C. & Chapman, E. R. Concurrent binding of complexin and synaptotagmin to liposome-embedded SNARE complexes. Biochemistry 48, 657-659 (2009).
    • (2009) Biochemistry , vol.48 , pp. 657-659
    • Chicka, M.C.1    Chapman, E.R.2
  • 16
    • 33748605056 scopus 로고    scopus 로고
    • A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis
    • Tang, J. et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175-1187 (2006).
    • (2006) Cell , vol.126 , pp. 1175-1187
    • Tang, J.1
  • 17
    • 84870992389 scopus 로고    scopus 로고
    • Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity
    • Jorquera, R. A., Huntwork-Rodriguez, S., Akbergenova, Y., Cho, R. W. & Littleton, J. T. Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity. J. Neurosci. 32, 18234-18245 (2012).
    • (2012) J. Neurosci. , vol.32 , pp. 18234-18245
    • Jorquera, R.A.1    Huntwork-Rodriguez, S.2    Akbergenova, Y.3    Cho, R.W.4    Littleton, J.T.5
  • 18
    • 84890816398 scopus 로고    scopus 로고
    • 2+-triggered exocytosis by comparing knockout and knockdown phenotypes
    • 2+-triggered exocytosis by comparing knockout and knockdown phenotypes. Proc. Natl Acad. Sci. USA 110, 20777-20782 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 20777-20782
    • Yang, X.1    Cao, P.2    Südhof, T.C.3
  • 19
    • 34948901461 scopus 로고    scopus 로고
    • Distinct domains of complexin I differentially regulate neurotransmitter release
    • Xue, M. et al. Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol. 14, 949-958 (2007).
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 949-958
    • Xue, M.1
  • 20
    • 77951975523 scopus 로고    scopus 로고
    • Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity
    • Xue, M. et al. Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nat. Struct. Mol. Biol. 17, 568-575 (2010).
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 568-575
    • Xue, M.1
  • 21
    • 79961028121 scopus 로고    scopus 로고
    • A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion
    • Krishnakumar, S. S. et al. A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nat. Struct. Mol. Biol. 18, 934-940 (2011).
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 934-940
    • Krishnakumar, S.S.1
  • 22
    • 79961030875 scopus 로고    scopus 로고
    • Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic state
    • Li, F. et al. Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic state. Nat. Struct. Mol. Biol. 18, 941-946 (2011).
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 941-946
    • Li, F.1
  • 23
    • 79961024212 scopus 로고    scopus 로고
    • Complexin cross-links prefusion SNAREs into a zigzag array
    • Kümmel, D. et al. Complexin cross-links prefusion SNAREs into a zigzag array. Nat. Struct. Mol. Biol. 18, 927-933 (2011).
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 927-933
    • Kümmel, D.1
  • 24
    • 77949330731 scopus 로고    scopus 로고
    • Accessory α-helix of complexin I can displace VAMP2 locally in the complexin-SNARE quaternary complex
    • Lu, B., Song, S. & Shin, Y.-K. Accessory α-helix of complexin I can displace VAMP2 locally in the complexin-SNARE quaternary complex. J. Mol. Biol. 396, 602-609 (2010).
    • (2010) J. Mol. Biol. , vol.396 , pp. 602-609
    • Lu, B.1    Song, S.2    Shin, Y.-K.3
  • 25
    • 58849105859 scopus 로고    scopus 로고
    • Alternative zippering as an on-off switch for SNARE-mediated fusion
    • Giraudo, C. G. et al. Alternative zippering as an on-off switch for SNARE-mediated fusion. Science 323, 512-516 (2009).
    • (2009) Science , vol.323 , pp. 512-516
    • Giraudo, C.G.1
  • 26
    • 84881419503 scopus 로고    scopus 로고
    • Interaction of the complexin accessory helix with the C-terminus of the SNARE complex: Molecular-dynamics model of the fusion clamp
    • Bykhovskaia, M., Jagota, A., Gonzalez, A., Vasin, A. & Littleton, J. T. Interaction of the complexin accessory helix with the C-terminus of the SNARE complex: molecular-dynamics model of the fusion clamp. Biophys. J. 105, 679-690 (2013).
    • (2013) Biophys. J. , vol.105 , pp. 679-690
    • Bykhovskaia, M.1    Jagota, A.2    Gonzalez, A.3    Vasin, A.4    Littleton, J.T.5
  • 27
    • 0037204076 scopus 로고    scopus 로고
    • Three-dimensional structure of the complexin/SNARE complex
    • Chen, X. et al. Three-dimensional structure of the complexin/SNARE complex. Neuron 33, 397-409 (2002).
    • (2002) Neuron , vol.33 , pp. 397-409
    • Chen, X.1
  • 28
    • 0034733545 scopus 로고    scopus 로고
    • Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions
    • Pabst, S. et al. Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions. J. Biol. Chem. 275, 19808-19818 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 19808-19818
    • Pabst, S.1
  • 29
    • 0037135615 scopus 로고    scopus 로고
    • X-ray structure of a neuronal complexin-SNARE complex from squid
    • Bracher, A., Kadlec, J., Betz, H. & Weissenhorn, W. X-ray structure of a neuronal complexin-SNARE complex from squid. J. Biol. Chem. 277, 26517-26523 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 26517-26523
    • Bracher, A.1    Kadlec, J.2    Betz, H.3    Weissenhorn, W.4
  • 30
    • 67650161468 scopus 로고    scopus 로고
    • A role of complexin-lipid interactions in membrane fusion
    • Seiler, F., Malsam, J., Krause, J. M. & Söllner, T. H. A role of complexin-lipid interactions in membrane fusion. FEBS Lett. 583, 2343-2348 (2009).
    • (2009) FEBS Lett. , vol.583 , pp. 2343-2348
    • Seiler, F.1    Malsam, J.2    Krause, J.M.3    Söllner, T.H.4
  • 31
    • 84880141417 scopus 로고    scopus 로고
    • Molecular mechanisms of complexin fusion clamp function in synaptic exocytosis revealed in a new Drosophila mutant
    • Iyer, J., Wahlmark, C. J., Kuser-Ahnert, G. A. & Kawasaki, F. Molecular mechanisms of complexin fusion clamp function in synaptic exocytosis revealed in a new Drosophila mutant. Mol. Cell. Neurosci. 56, 244-254 (2013).
    • (2013) Mol. Cell. Neurosci. , vol.56 , pp. 244-254
    • Iyer, J.1    Wahlmark, C.J.2    Kuser-Ahnert, G.A.3    Kawasaki, F.4
  • 32
    • 84870829393 scopus 로고    scopus 로고
    • Differential regulation of evoked and spontaneous neurotransmitter release by C-terminal modifications of complexin
    • Buhl, L. K. et al. Differential regulation of evoked and spontaneous neurotransmitter release by C-terminal modifications of complexin. Mol. Cell. Neurosci. 52, 161-172 (2013).
    • (2013) Mol. Cell. Neurosci. , vol.52 , pp. 161-172
    • Buhl, L.K.1
  • 33
    • 33750805030 scopus 로고    scopus 로고
    • Molecular anatomy of a trafficking organelle
    • Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831-846 (2006).
    • (2006) Cell , vol.127 , pp. 831-846
    • Takamori, S.1
  • 34
    • 79960279832 scopus 로고    scopus 로고
    • Alpha-synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding
    • Pranke, I. M. et al. Alpha-synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. J. Cell Biol. 194, 89-103 (2011).
    • (2011) J. Cell Biol. , vol.194 , pp. 89-103
    • Pranke, I.M.1
  • 35
    • 79959397904 scopus 로고    scopus 로고
    • Mechanisms of membrane curvature sensing
    • Antonny, B. Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80, 101-123 (2011).
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 101-123
    • Antonny, B.1
  • 36
    • 77950596030 scopus 로고    scopus 로고
    • A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins
    • Bhatia, V. K., Hatzakis, N. S. & Stamou, D. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin. Cell Dev. Biol. 21, 381-390 (2010).
    • (2010) Semin. Cell Dev. Biol. , vol.21 , pp. 381-390
    • Bhatia, V.K.1    Hatzakis, N.S.2    Stamou, D.3
  • 37
    • 77951896130 scopus 로고    scopus 로고
    • Amphipathic helices and membrane curvature
    • Drin, G. & Antonny, B. Amphipathic helices and membrane curvature. FEBS Lett. 584, 1840-1847 (2010).
    • (2010) FEBS Lett. , vol.584 , pp. 1840-1847
    • Drin, G.1    Antonny, B.2
  • 38
    • 70350783743 scopus 로고    scopus 로고
    • Amphipathic motifs in BAR domains are essential for membrane curvature sensing
    • Bhatia, V. K. et al. Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO J. 28, 3303-3314 (2009).
    • (2009) EMBO J. , vol.28 , pp. 3303-3314
    • Bhatia, V.K.1
  • 39
    • 70350337096 scopus 로고    scopus 로고
    • How curved membranes recruit amphipathic helices and protein anchoring motifs
    • Hatzakis, N. S. et al. How curved membranes recruit amphipathic helices and protein anchoring motifs. Nat. Chem. Biol. 5, 835-841 (2009).
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 835-841
    • Hatzakis, N.S.1
  • 40
    • 84870055317 scopus 로고    scopus 로고
    • Membrane curvature and its generation by BAR proteins
    • Mim, C. & Unger, V. M. Membrane curvature and its generation by BAR proteins. Trends Biochem. Sci. 37, 526-533 (2012).
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 526-533
    • Mim, C.1    Unger, V.M.2
  • 41
    • 79953862815 scopus 로고    scopus 로고
    • Mechanism of membrane curvature sensing by amphipathic helix containing proteins
    • Cui, H., Lyman, E. & Voth, G. A. Mechanism of membrane curvature sensing by amphipathic helix containing proteins. Biophys. J. 100, 1271-1279 (2011).
    • (2011) Biophys. J. , vol.100 , pp. 1271-1279
    • Cui, H.1    Lyman, E.2    Voth, G.A.3
  • 42
    • 84872575353 scopus 로고    scopus 로고
    • MARCKS-ED peptide as a curvature and lipid sensor
    • Morton, L. A. et al. MARCKS-ED peptide as a curvature and lipid sensor. ACS Chem. Biol. 8, 218-225 (2013).
    • (2013) ACS Chem. Biol. , vol.8 , pp. 218-225
    • Morton, L.A.1
  • 43
    • 0347625853 scopus 로고    scopus 로고
    • Solution structure of human saposin C: PH-dependent interaction with phospholipid vesicles
    • de Alba, E., Weiler, S. & Tjandra, N. Solution structure of human saposin C: pH-dependent interaction with phospholipid vesicles. Biochemistry 42, 14729-14740 (2003).
    • (2003) Biochemistry , vol.42 , pp. 14729-14740
    • De Alba, E.1    Weiler, S.2    Tjandra, N.3
  • 44
    • 15244347219 scopus 로고    scopus 로고
    • Helix periodicity, topology, and dynamics of membrane-associated α-synuclein
    • Bussell, Jr R., Ramlall, T. F. & Eliezer, D. Helix periodicity, topology, and dynamics of membrane-associated α-Synuclein. Protein Sci. 14, 862-872 (2005).
    • (2005) Protein Sci. , vol.14 , pp. 862-872
    • Bussell, R.1    Ramlall, T.F.2    Eliezer, D.3
  • 45
    • 67649380327 scopus 로고    scopus 로고
    • Multiple tight phospholipid-binding modes of α-synuclein revealed by solution NMR spectroscopy
    • Bodner, C. R., Dobson, C. M. & Bax, A. Multiple tight phospholipid-binding modes of α-Synuclein revealed by solution NMR spectroscopy. J. Mol. Biol. 390, 775-790 (2009).
    • (2009) J. Mol. Biol. , vol.390 , pp. 775-790
    • Bodner, C.R.1    Dobson, C.M.2    Bax, A.3
  • 46
    • 75749093356 scopus 로고    scopus 로고
    • Differential phospholipid binding of α-synuclein variants implicated in Parkinson's Disease revealed by solution NMR spectroscopy
    • Bodner, C. R., Maltsev, A. S., Dobson, C. M. & Bax, A. Differential phospholipid binding of α-Synuclein variants implicated in Parkinson's Disease revealed by solution NMR spectroscopy. Biochemistry 49, 862-871 (2010).
    • (2010) Biochemistry , vol.49 , pp. 862-871
    • Bodner, C.R.1    Maltsev, A.S.2    Dobson, C.M.3    Bax, A.4
  • 47
    • 84893667535 scopus 로고    scopus 로고
    • N-terminal acetylation stabilizes N-terminal helicity in lipid- and micelle-bound α-synuclein and increases its affinity for physiological membranes
    • Dikiy, I. & Eliezer, D. N-terminal acetylation stabilizes N-terminal helicity in lipid- and micelle-bound α-synuclein and increases its affinity for physiological membranes. J. Biol. Chem. 289, 3652-3665 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 3652-3665
    • Dikiy, I.1    Eliezer, D.2
  • 48
    • 84869040414 scopus 로고    scopus 로고
    • Curvature, lipid packing, and electrostatics of membrane organelles: Defining cellular territories in determining specificity
    • Bigay, J. & Antonny, B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23, 886-895 (2012).
    • (2012) Dev. Cell , vol.23 , pp. 886-895
    • Bigay, J.1    Antonny, B.2
  • 49
    • 64249110493 scopus 로고    scopus 로고
    • The BAR domain superfamily: Membrane-molding macromolecules
    • Frost, A., Unger, V. M. & De Camilli, P. The BAR domain superfamily: membrane-molding macromolecules. Cell 137, 191-196 (2009).
    • (2009) Cell , vol.137 , pp. 191-196
    • Frost, A.1    Unger, V.M.2    De Camilli, P.3
  • 50
    • 0141754072 scopus 로고    scopus 로고
    • Location of the myristoylated alanine-rich C-kinase substrate (MARCKS) effector domain in negatively charged phospholipid bicelles
    • Ellena, J. F., Burnitz, M. C. & Cafiso, D. S. Location of the myristoylated alanine-rich C-kinase substrate (MARCKS) effector domain in negatively charged phospholipid bicelles. Biophys. J. 85, 2442-2448 (2003).
    • (2003) Biophys. J. , vol.85 , pp. 2442-2448
    • Ellena, J.F.1    Burnitz, M.C.2    Cafiso, D.S.3
  • 51
    • 1942487766 scopus 로고    scopus 로고
    • A computational model for the electrostatic sequestration of PI(4,5)P2 by membrane-adsorbed basic peptides
    • Wang, J., Gambhir, A., McLaughlin, S. & Murray, D. A computational model for the electrostatic sequestration of PI(4,5)P2 by membrane-adsorbed basic peptides. Biophys. J. 86, 1969-1986 (2004).
    • (2004) Biophys. J. , vol.86 , pp. 1969-1986
    • Wang, J.1    Gambhir, A.2    McLaughlin, S.3    Murray, D.4
  • 52
    • 1942519695 scopus 로고    scopus 로고
    • Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins
    • Gambhir, A. et al. Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophys. J. 86, 2188-2207 (2004).
    • (2004) Biophys. J. , vol.86 , pp. 2188-2207
    • Gambhir, A.1
  • 53
    • 0037072757 scopus 로고    scopus 로고
    • Lateral sequestration of phosphatidylinositol 4,5-bisphosphate by the basic effector domain of myristoylated alanine-rich C kinase substrate is due to nonspecific electrostatic interactions
    • Wang, J. et al. Lateral sequestration of phosphatidylinositol 4,5-bisphosphate by the basic effector domain of myristoylated alanine-rich C kinase substrate is due to nonspecific electrostatic interactions. J. Biol. Chem. 277, 34401-34412 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 34401-34412
    • Wang, J.1
  • 54
    • 0037821876 scopus 로고    scopus 로고
    • Binding of peptides with basic and aromatic residues to bilayer membranes: Phenylalanine in the myristoylated alanine-rich C kinase substrate effector domain penetrates into the hydrophobic core of the bilayer
    • Zhang, W., Crocker, E., McLaughlin, S. & Smith, S. O. Binding of peptides with basic and aromatic residues to bilayer membranes: phenylalanine in the myristoylated alanine-rich C kinase substrate effector domain penetrates into the hydrophobic core of the bilayer. J. Biol. Chem. 278, 21459-21466 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 21459-21466
    • Zhang, W.1    Crocker, E.2    McLaughlin, S.3    Smith, S.O.4
  • 55
    • 33745523031 scopus 로고    scopus 로고
    • Mechanism of endophilin N-BAR domain-mediated membrane curvature
    • Gallop, J. L. et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898-2910 (2006).
    • (2006) EMBO J. , vol.25 , pp. 2898-2910
    • Gallop, J.L.1
  • 56
    • 2542461043 scopus 로고    scopus 로고
    • Alpha-synuclein has a high affinity for packing defects in a bilayer membrane: A thermodynamics study
    • Nuscher, B. et al. Alpha-synuclein has a high affinity for packing defects in a bilayer membrane: a thermodynamics study. J. Biol. Chem. 279, 21966-21975 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 21966-21975
    • Nuscher, B.1
  • 57
    • 82755176258 scopus 로고    scopus 로고
    • Membrane curvature sensing by amphipathic helices: A single liposome study using α-synuclein and annexin B12
    • Jensen, M. B. et al. Membrane curvature sensing by amphipathic helices: a single liposome study using α-synuclein and annexin B12. J. Biol. Chem. 286, 42603-42614 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 42603-42614
    • Jensen, M.B.1
  • 58
    • 77958455514 scopus 로고    scopus 로고
    • Effects of curvature and composition on α-synuclein binding to lipid vesicles
    • Middleton, E. R. & Rhoades, E. Effects of curvature and composition on α-synuclein binding to lipid vesicles. Biophys. J. 99, 2279-2288 (2010).
    • (2010) Biophys. J. , vol.99 , pp. 2279-2288
    • Middleton, E.R.1    Rhoades, E.2
  • 59
    • 33744788870 scopus 로고    scopus 로고
    • Quantification of a-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy
    • Rhoades, E., Ramlall, T. F., Webb, W. W. & Eliezer, D. Quantification of a-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. Biophys. J. 90, 4692-4700 (2006).
    • (2006) Biophys. J. , vol.90 , pp. 4692-4700
    • Rhoades, E.1    Ramlall, T.F.2    Webb, W.W.3    Eliezer, D.4
  • 61
    • 67649344732 scopus 로고    scopus 로고
    • The influence of vesicle size and composition on alpha-synuclein structure and stability
    • Kjaer, L., Giehm, L., Heimburg, T. & Otzen, D. The influence of vesicle size and composition on alpha-synuclein structure and stability. Biophys. J. 96, 2857-2870 (2009).
    • (2009) Biophys. J. , vol.96 , pp. 2857-2870
    • Kjaer, L.1    Giehm, L.2    Heimburg, T.3    Otzen, D.4
  • 62
    • 84857649648 scopus 로고    scopus 로고
    • Folding and misfolding of alpha-synuclein on membranes
    • Dikiy, I. & Eliezer, D. Folding and misfolding of alpha-synuclein on membranes. Biochim. Biophys. Acta 1818, 1013-1018 2012.
    • (2012) Biochim. Biophys. Acta , vol.1818 , pp. 1013-1018
    • Dikiy, I.1    Eliezer, D.2
  • 63
    • 22344436671 scopus 로고    scopus 로고
    • Structurally and functionally unique complexins at retinal ribbon synapses
    • Reim, K. Structurally and functionally unique complexins at retinal ribbon synapses. J. Cell Biol. 169, 669-680 (2005).
    • (2005) J. Cell Biol. , vol.169 , pp. 669-680
    • Reim, K.1
  • 64
    • 64949163287 scopus 로고    scopus 로고
    • Direct interaction of SNARE complex binding protein synaphin/complexin with calcium sensor synaptotagmin 1
    • Tokumaru, H., Shimizu-Okabe, C. & Abe, T. Direct interaction of SNARE complex binding protein synaphin/complexin with calcium sensor synaptotagmin 1. Brain Cell Biol. 36, 173-189 (2009).
    • (2009) Brain Cell Biol. , vol.36 , pp. 173-189
    • Tokumaru, H.1    Shimizu-Okabe, C.2    Abe, T.3
  • 65
    • 0029364052 scopus 로고
    • 1H, 13C and 15N chemical shift referencing in biomolecular NMR
    • Wishart, D. S. et al. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol. NMR 6, 135-140 (1995).
    • (1995) J Biomol. NMR , vol.6 , pp. 135-140
    • Wishart, D.S.1
  • 66
    • 0029181728 scopus 로고
    • 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects
    • Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S. & Sykes, B. D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol. NMR 5, 67-81 (1995).
    • (1995) J Biomol. NMR , vol.5 , pp. 67-81
    • Wishart, D.S.1    Bigam, C.G.2    Holm, A.3    Hodges, R.S.4    Sykes, B.D.5
  • 67
    • 0015937178 scopus 로고
    • Interaction of an apolipoprotein (apoLP-alanine) with phosphatidylcholine
    • Morrisett, J. D., David, J. S., Pownall, H. J. & Gotto, A. M. Interaction of an apolipoprotein (apoLP-alanine) with phosphatidylcholine. Biochemistry 12, 1290-1299 (1973).
    • (1973) Biochemistry , vol.12 , pp. 1290-1299
    • Morrisett, J.D.1    David, J.S.2    Pownall, H.J.3    Gotto, A.M.4
  • 68
    • 77950559887 scopus 로고    scopus 로고
    • Tryptophan probes at the α-synuclein and membrane interface
    • Pfefferkorn, C. M. & Lee, J. C. Tryptophan probes at the α-synuclein and membrane interface. J. Phys. Chem. B 114, 4615-4622 (2010).
    • (2010) J. Phys. Chem. B , vol.114 , pp. 4615-4622
    • Pfefferkorn, C.M.1    Lee, J.C.2
  • 69
    • 0016063911 scopus 로고
    • The genetics of Caenorhabditis elegans
    • Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974).
    • (1974) Genetics , vol.77 , pp. 71-94
    • Brenner, S.1
  • 70
    • 49049088584 scopus 로고    scopus 로고
    • B receptors regulate Caenorhabditis elegans locomotion
    • B receptors regulate Caenorhabditis elegans locomotion. J. Neurosci. 28, 7104-7112 (2008).
    • (2008) J. Neurosci. , vol.28 , pp. 7104-7112
    • Dittman, J.S.1    Kaplan, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.