메뉴 건너뛰기




Volumn 21, Issue 3-4, 2015, Pages 694-703

Decellularized cartilage-derived matrix as substrate for endochondral bone regeneration

Author keywords

[No Author keywords available]

Indexed keywords

CARTILAGE; CELL CULTURE; FLOWCHARTING; SCAFFOLDS (BIOLOGY); TISSUE REGENERATION;

EID: 84923277400     PISSN: 19373341     EISSN: 1937335X     Source Type: Journal    
DOI: 10.1089/ten.tea.2014.0117     Document Type: Article
Times cited : (63)

References (33)
  • 1
    • 77952199886 scopus 로고    scopus 로고
    • Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as paradigm for developmental engineering
    • Scotti, C., et al. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as paradigm for developmental engineering. Proc Natl Acad Sci U S A 107 7251 2010.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 7251
    • Scotti, C.1
  • 2
    • 79251570874 scopus 로고    scopus 로고
    • In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells
    • Farrell, E., et al. In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskelet Disord 12, 31, 2011.
    • (2011) BMC Musculoskelet Disord , vol.12 , pp. 31
    • Farrell, E.1
  • 3
    • 67649849633 scopus 로고    scopus 로고
    • Chondrogenic priming of human bone marrow stromal cells: A better route to bone repair?
    • Farrell, E., et al. Chondrogenic priming of human bone marrow stromal cells: a better route to bone repair?. Tissue Eng Part C Methods 15, 285, 2009.
    • (2009) Tissue Eng Part C Methods , vol.15 , pp. 285
    • Farrell, E.1
  • 4
    • 70350732729 scopus 로고    scopus 로고
    • The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model
    • Tortelli, F., et al. The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model. Biomaterials 31, 242, 2010.
    • (2010) Biomaterials , vol.31 , pp. 242
    • Tortelli, F.1
  • 5
    • 33750321974 scopus 로고    scopus 로고
    • Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in scid mice
    • Pelttari, K., et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54, 3254, 2006.
    • (2006) Arthritis Rheum , vol.54 , pp. 3254
    • Pelttari, K.1
  • 6
    • 35748954326 scopus 로고    scopus 로고
    • Endochondral ossification: How cartilage is converted into bone in the developing skeleton
    • Mackie, E.J., et al. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40, 46, 2008.
    • (2008) Int J Biochem Cell Biol , vol.40 , pp. 46
    • MacKie, E.J.1
  • 7
    • 77955066100 scopus 로고    scopus 로고
    • Modulating endochondral ossification of multipotent stromal cells for bone regeneration
    • Gawlitta, D., et al. Modulating endochondral ossification of multipotent stromal cells for bone regeneration. Tissue Eng Part B Rev 16, 385, 2010.
    • (2010) Tissue Eng Part B Rev , vol.16 , pp. 385
    • Gawlitta, D.1
  • 8
    • 84866996752 scopus 로고    scopus 로고
    • Hypoxia impedes hypertrophic chondrogenesis of human multipotent stromal cells
    • Gawlitta, D., et al. Hypoxia impedes hypertrophic chondrogenesis of human multipotent stromal cells. Tissue Eng Part A 18, 1957, 2012.
    • (2012) Tissue Eng Part A , vol.18 , pp. 1957
    • Gawlitta, D.1
  • 9
    • 44349142926 scopus 로고    scopus 로고
    • Endochondral bone tissue engineering using embryonic stem cells
    • Jukes, J.M., et al. Endochondral bone tissue engineering using embryonic stem cells. Proc Natl Acad Sci U S A 105, 6840, 2008.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 6840
    • Jukes, J.M.1
  • 10
    • 77956374419 scopus 로고    scopus 로고
    • Chondrogenic pre-induction of human mesenchymal stem cells on beta-Tcp: Enhanced bone quality by endochondral heterotopic bone formation
    • Janicki, P., et al. Chondrogenic pre-induction of human mesenchymal stem cells on beta-TCP: enhanced bone quality by endochondral heterotopic bone formation. Acta Biomater 6, 3292, 2010.
    • (2010) Acta Biomater , vol.6 , pp. 3292
    • Janicki, P.1
  • 11
    • 0022728362 scopus 로고
    • Autogenous transplantation of rib cartilage, preserved in glycerol, to the malar process of rats: A histological study
    • Gabrielli, M.F., et al. Autogenous transplantation of rib cartilage, preserved in glycerol, to the malar process of rats: a histological study. J Nihon Univ Sch Dent 28, 87, 1986.
    • (1986) J Nihon Univ Sch Dent , vol.28 , pp. 87
    • Gabrielli, M.F.1
  • 12
    • 17044440781 scopus 로고
    • Ossification after transplantation of model cartilage in the rat patella
    • Asch, L., and Asch, G. [Ossification after transplantation of model cartilage in the rat patella]. Arch Anat Histol Embryol 72, 81, 1989.
    • (1989) Arch Anat Histol Embryol , vol.72 , pp. 81
    • Asch, L.1    Asch, G.2
  • 13
    • 0014253766 scopus 로고
    • Cartilage or bone induction by articular cartilage observations with radioisotope labelling techniques
    • Urist, M.R., and Adams, T. Cartilage or bone induction by articular cartilage. Observations with radioisotope labelling techniques. J Bone Joint Surg Br 50, 198, 1968.
    • (1968) J Bone Joint Surg Br , vol.50 , pp. 198
    • Urist, M.R.1    Adams, T.2
  • 14
    • 0000737573 scopus 로고
    • Osteogenetic potency and newbone formation by induction in transplants to the anterior chamber of the eye
    • Urist, M.R., and Mc, L.F. Osteogenetic potency and newbone formation by induction in transplants to the anterior chamber of the eye. J Bone Joint Surg Am 34-A, 443, 1952.
    • (1952) J Bone Joint Surg Am 34-A , pp. 443
    • Urist, M.R.1    Mc, L.F.2
  • 15
    • 84875265038 scopus 로고    scopus 로고
    • Extracellular matrix scaffolds for cartilage and bone regeneration
    • Benders, K.E., et al. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 31, 169, 2013.
    • (2013) Trends Biotechnol , vol.31 , pp. 169
    • Benders, K.E.1
  • 16
    • 84876894186 scopus 로고    scopus 로고
    • Bioengineering of articular cartilage: Past, present and future
    • Ye, K., et al. Bioengineering of articular cartilage: past, present and future. Regen Med 8, 333, 2013.
    • (2013) Regen Med , vol.8 , pp. 333
    • Ye, K.1
  • 17
    • 84955179731 scopus 로고    scopus 로고
    • Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: Effects on chondrocyte differentiation and function
    • Epub ahead of print
    • Schwarz, S., et al. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function. J Tissue Eng Regen Med 2012 [Epub ahead of print]; DOI: 10.1002/term.1650.
    • (2012) J Tissue Eng Regen Med
    • Schwarz, S.1
  • 18
    • 84868536994 scopus 로고    scopus 로고
    • Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications
    • Schwarz, S., et al. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A 18, 2195, 2012.
    • (2012) Tissue Eng Part A , vol.18 , pp. 2195
    • Schwarz, S.1
  • 19
    • 67349248605 scopus 로고    scopus 로고
    • Extraction techniques for the decellularization of tissue engineered articular cartilage constructs
    • Elder, B.D., Eleswarapu, S.V., and Athanasiou, K.A. Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials 30, 3749, 2009.
    • (2009) Biomaterials , vol.30 , pp. 3749
    • Elder, B.D.1    Eleswarapu, S.V.2    Athanasiou, K.A.3
  • 20
    • 84865299945 scopus 로고    scopus 로고
    • Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles
    • Malda, J., et al. Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles. Osteoarthritis Cartilage 20, 1147, 2012.
    • (2012) Osteoarthritis Cartilage , vol.20 , pp. 1147
    • Malda, J.1
  • 21
    • 84911926886 scopus 로고    scopus 로고
    • Multipotent stromal cells outperform chondrocytes on cartilage-derived matrix scaffolds
    • Epub ahead of print
    • Benders, K.E.M., et al. Multipotent stromal cells outperform chondrocytes on cartilage-derived matrix scaffolds. Cartilage 2014 [Epub ahead of print]; DOI: 10.1177/ 1947603514535245.
    • (2014) Cartilage
    • Benders, K.E.M.1
  • 22
    • 77957332219 scopus 로고    scopus 로고
    • Fabrication and repair of cartilage defects with a novel acellular cartilage matrix scaffold
    • Yang, Z., et al. Fabrication and repair of cartilage defects with a novel acellular cartilage matrix scaffold. Tissue Eng Part C Methods 16, 865, 2010.
    • (2010) Tissue Eng Part C Methods , vol.16 , pp. 865
    • Yang, Z.1
  • 23
    • 77953626751 scopus 로고    scopus 로고
    • The use of fluorochrome labels for in vivo bone tissue engineering research
    • van Gaalen, S.M., et al. The use of fluorochrome labels for in vivo bone tissue engineering research. Tissue Eng Part B Rev 16, 209, 2009.
    • (2009) Tissue Eng Part B Rev , vol.16 , pp. 209
    • Van Gaalen, S.M.1
  • 24
    • 24944580849 scopus 로고    scopus 로고
    • Polychrome labeling of bone with seven different fluorochromes: Enhancing fluorochrome discrimination by spectral image analysis
    • Pautke, C., et al. Polychrome labeling of bone with seven different fluorochromes: enhancing fluorochrome discrimination by spectral image analysis. Bone 37, 441, 2005.
    • (2005) Bone , vol.37 , pp. 441
    • Pautke, C.1
  • 25
    • 1542510685 scopus 로고    scopus 로고
    • Oxygen gradients in tissue-engineered pegt/pbt cartilaginous constructs: Measurement and modeling
    • Malda, J., et al. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling. Biotechnol Bioeng 86, 9, 2004.
    • (2004) Biotechnol Bioeng , vol.86 , pp. 9
    • Malda, J.1
  • 26
    • 33748569155 scopus 로고    scopus 로고
    • Bioreactors for tissue engineering
    • Chen, H.C., and Hu, Y.C. Bioreactors for tissue engineering. Biotechnol Lett 28, 1415, 2006.
    • (2006) Biotechnol Lett , vol.28 , pp. 1415
    • Chen, H.C.1    Hu, Y.C.2
  • 27
    • 0031606491 scopus 로고    scopus 로고
    • Ageing of equine articular cartilage: Structure and composition of aggrecan and decorin
    • Platt, D., Bird, J.L., and Bayliss, M.T. Ageing of equine articular cartilage: structure and composition of aggrecan and decorin. Equine Vet J 30, 43, 1998.
    • (1998) Equine Vet J , vol.30 , pp. 43
    • Platt, D.1    Bird, J.L.2    Bayliss, M.T.3
  • 28
    • 0033087819 scopus 로고    scopus 로고
    • Influence of site and age on biochemical characteristics of the collagen network of equine articular cartilage
    • Brama, P.A., et al. Influence of site and age on biochemical characteristics of the collagen network of equine articular cartilage. Am J Vet Res 60, 341, 1999.
    • (1999) Am J Vet Res , vol.60 , pp. 341
    • Brama, P.A.1
  • 29
    • 84911926886 scopus 로고    scopus 로고
    • Multipotent stromal cells outperform chondrocytes on cartilage-derived matrix scaffolds
    • Benders, K.E.M., et al. Multipotent stromal cells outperform chondrocytes on cartilage-derived matrix scaffolds. Cartilage 5, 221, 2014.
    • (2014) Cartilage , vol.5 , pp. 221
    • Benders, K.E.M.1
  • 30
    • 80053198856 scopus 로고    scopus 로고
    • Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering
    • Kheir, E., et al. Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. J Biomed Mater Res A 99, 283, 2011.
    • (2011) J Biomed Mater Res A , vol.99 , pp. 283
    • Kheir, E.1
  • 31
    • 40649115896 scopus 로고    scopus 로고
    • A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells
    • Yang, Q., et al. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials 29, 2378, 2008.
    • (2008) Biomaterials , vol.29 , pp. 2378
    • Yang, Q.1
  • 32
    • 56649100319 scopus 로고    scopus 로고
    • The structure of glycosaminoglycans and their interactions with proteins
    • Gandhi, N.S., and Mancera, R.L. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72, 455, 2008.
    • (2008) Chem Biol Drug des , vol.72 , pp. 455
    • Gandhi, N.S.1    Mancera, R.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.