메뉴 건너뛰기




Volumn , Issue , 2014, Pages 430-439

Multi-label image classification with a probabilistic label enhancement model

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BINARY TREES; CLASSIFICATION (OF INFORMATION); IMAGE SEGMENTATION; LEARNING SYSTEMS; MESSAGE PASSING; RANDOM PROCESSES; TREES (MATHEMATICS);

EID: 84923267669     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (76)

References (36)
  • 2
  • 3
    • 84898821056 scopus 로고    scopus 로고
    • New graph structured sparsity model for multi-label image annotations
    • X. Cai, F. Nie, W. Cai, and H. Huang. New graph structured sparsity model for multi-label image annotations. In Proceedings of ICCV, 2013.
    • (2013) Proceedings of ICCV
    • Cai, X.1    Nie, F.2    Cai, W.3    Huang, H.4
  • 4
    • 33847419773 scopus 로고    scopus 로고
    • Supervised learning of semantic classes for image annotation and retrieval
    • G. Carneiro, A. Chan, P. Moreno, and N. Vasconcelos. Supervised learning of semantic classes for image annotation and retrieval. IEEE TPAMI, 29(3), 2007.
    • (2007) IEEE TPAMI , vol.29 , Issue.3
    • Carneiro, G.1    Chan, A.2    Moreno, P.3    Vasconcelos, N.4
  • 5
    • 78651102750 scopus 로고    scopus 로고
    • Semisupervised multi-label learning by solving a sylvester equation
    • G. Chen, Y. Song, F. Wang, and C. Zhang. Semisupervised multi-label learning by solving a sylvester equation. In Proceedings of SDM, 2008.
    • (2008) Proceedings of SDM
    • Chen, G.1    Song, Y.2    Wang, F.3    Zhang, C.4
  • 6
    • 77956522919 scopus 로고    scopus 로고
    • Bayes optimal multilabel classification via probability classifier chains
    • K. Dembczynski, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via probability classifier chains. In Proceedings of ICML, 2010.
    • (2010) Proceedings of ICML
    • Dembczynski, K.1    Cheng, W.2    Hüllermeier, E.3
  • 7
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In Proceedings of NIPS, 2002.
    • (2002) Proceedings of NIPS
    • Elisseeff, A.1    Weston, J.2
  • 9
    • 5044225521 scopus 로고    scopus 로고
    • Multiple bernoulli relevance models for image and video annotation
    • S. Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for image and video annotation. In Proceedings of CVPR, 2004.
    • (2004) Proceedings of CVPR
    • Feng, S.1    Manmatha, R.2    Lavrenko, V.3
  • 10
    • 84898790932 scopus 로고    scopus 로고
    • Large-scale image annotation by efficient and robust kernel metric learning
    • Z. Feng, R. Jin, and A. Jain. Large-scale image annotation by efficient and robust kernel metric learning. In Proceedings of ICCV, 2013.
    • (2013) Proceedings of ICCV
    • Feng, Z.1    Jin, R.2    Jain, A.3
  • 12
    • 46149118255 scopus 로고    scopus 로고
    • A discriminative kernelbased approach to rank images from text queries
    • D. Grangier and S. Bengio. A discriminative kernelbased approach to rank images from text queries. IEEE TPAMI, 30(8):1371-1384, 2008.
    • (2008) IEEE TPAMI , vol.30 , Issue.8 , pp. 1371-1384
    • Grangier, D.1    Bengio, S.2
  • 13
    • 77953202699 scopus 로고    scopus 로고
    • Tagprop: Discriminative metric learning in nearest neighbor models for image autoannotation
    • M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop: Discriminative metric learning in nearest neighbor models for image autoannotation. In Proceedings of CVPR, 2009.
    • (2009) Proceedings of CVPR
    • Guillaumin, M.1    Mensink, T.2    Verbeek, J.3    Schmid, C.4
  • 14
    • 84861443014 scopus 로고    scopus 로고
    • Multi-label classification using conditional dependency networks
    • Y. Guo and S. Gu. Multi-label classification using conditional dependency networks. In Proceedings of IJCAI, 2011.
    • (2011) Proceedings of IJCAI
    • Guo, Y.1    Gu, S.2
  • 15
    • 80055050349 scopus 로고    scopus 로고
    • Adaptive large margin training for multilabel classification
    • Y. Guo and D. Schuurmans. Adaptive large margin training for multilabel classification. In Proceedings of AAAI, 2011.
    • (2011) Proceedings of AAAI
    • Guo, Y.1    Schuurmans, D.2
  • 16
    • 84923302787 scopus 로고    scopus 로고
    • Multi-label classification with output kernels
    • Y. Guo and D. Schuurmans. Multi-label classification with output kernels. In Proceedings of ECML, 2013.
    • (2013) Proceedings of ECML
    • Guo, Y.1    Schuurmans, D.2
  • 17
    • 84896063365 scopus 로고    scopus 로고
    • Probablistic mult-label classification with sparse feature learning
    • Y. Guo and W. Xue. Probablistic mult-label classification with sparse feature learning. In Proceedings of IJCAI, 2013.
    • (2013) Proceedings of IJCAI
    • Guo, Y.1    Xue, W.2
  • 18
    • 69549088877 scopus 로고    scopus 로고
    • Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers
    • A. Gupta and L. Davis. Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers. In Proceedings of ECCV, 2008.
    • (2008) Proceedings of ECCV
    • Gupta, A.1    Davis, L.2
  • 20
    • 33845583962 scopus 로고    scopus 로고
    • Correlated label propagation with application to multi-label learning
    • F. Kang, R. Jin, and R. Sukthankar. Correlated label propagation with application to multi-label learning. In Proceedings of CVPR, 2006.
    • (2006) Proceedings of CVPR
    • Kang, F.1    Jin, R.2    Sukthankar, R.3
  • 23
    • 80052877810 scopus 로고    scopus 로고
    • Learning structured prediction models for interactive image labeling
    • T. Mensink, J. Verbeek, and G. Csurka. Learning structured prediction models for interactive image labeling. In Proceedings of CVPR, 2011.
    • (2011) Proceedings of CVPR
    • Mensink, T.1    Verbeek, J.2    Csurka, G.3
  • 24
    • 84923302433 scopus 로고    scopus 로고
    • PLSA-based image auto-annotation: Constraining the latent space
    • F. Monay and D. Gatica-Perez. PLSA-based image auto-annotation: Constraining the latent space. In Proceedings of MM, 2004.
    • (2004) Proceedings of MM
    • Monay, F.1    Gatica-Perez, D.2
  • 25
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3):145-175, 2001.
    • (2001) International Journal of Computer Vision , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 26
    • 84911584312 scopus 로고
    • Shortest connection networks and some generalizations
    • R.C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal, 36(6):1389-1401, 1957.
    • (1957) Bell System Technical Journal , vol.36 , Issue.6 , pp. 1389-1401
    • Prim, R.C.1
  • 30
    • 77953186234 scopus 로고    scopus 로고
    • Image annotation using multi-label correlated green's function
    • H. Wang, H. Huang, and C. Ding. Image annotation using multi-label correlated green's function. In Proceedings of CVPR, 2009.
    • (2009) Proceedings of CVPR
    • Wang, H.1    Huang, H.2    Ding, C.3
  • 33
    • 74549162069 scopus 로고    scopus 로고
    • Annotating images and image objects using a hierarchical dirichlet process model
    • O. Yakhnenko and V. Honavar. Annotating images and image objects using a hierarchical dirichlet process model. In Proceedings of MDM, 2008.
    • (2008) Proceedings of MDM
    • Yakhnenko, O.1    Honavar, V.2
  • 34
    • 77955988492 scopus 로고    scopus 로고
    • Modeling mutual context of object and human pose in human-object interaction activities
    • B. Yao and Fei-Fei Li. Modeling mutual context of object and human pose in human-object interaction activities. In Proceedings of CVPR, 2010.
    • (2010) Proceedings of CVPR
    • Yao, B.1    Li, F.2
  • 35
    • 60649094696 scopus 로고    scopus 로고
    • Graph-based semi-supervised learning with multiple labels
    • February
    • Z. Zha, T. Mei, J. Wang, Z. Wang, and X. Hua. Graph-based semi-supervised learning with multiple labels. J. Vis. Comun. Image Represent., 20(2):97-103, February 2009.
    • (2009) J. Vis. Comun. Image Represent. , vol.20 , Issue.2 , pp. 97-103
    • Zha, Z.1    Mei, T.2    Wang, J.3    Wang, Z.4    Hua, X.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.