메뉴 건너뛰기




Volumn 37, Issue 2, 2014, Pages 319-339

Hierarchical graphical bayesian models in psychology;Modelos bayesianos gráficos jerárquicos en psicología

Author keywords

Bayesian statistics; Graphical models; Hierarchical models; Psychology; Statistical cognition; Visual statistics

Indexed keywords


EID: 84923224279     PISSN: 01201751     EISSN: 23898976     Source Type: Journal    
DOI: 10.15446/rce.v37n2spe.47940     Document Type: Article
Times cited : (4)

References (44)
  • 2
    • 21344478093 scopus 로고
    • How diagrams can improve reasoning
    • Bauer, M. I. & Johnson-Laird, P. N. (1993), ‘How diagrams can improve reasoning’, Psychological Science 4(6), 372–378.
    • (1993) Psychological Science , vol.4 , Issue.6 , pp. 372-378
    • Bauer, M.I.1    Johnson-Laird, P.N.2
  • 3
    • 78651457733 scopus 로고    scopus 로고
    • Statistical cognition: Towards evidence-based practice in statistics and statistics education
    • Beyth Marom, R., Fidler, F. & Cumming, G. (2008), ‘Statistical cognition: Towards evidence-based practice in statistics and statistics education’, Statistics Education Research Journal 7(2), 20–39.
    • (2008) Statistics Education Research Journal , vol.7 , Issue.2 , pp. 20-39
    • Beyth Marom, R.1    Fidler, F.2    Cumming, G.3
  • 5
    • 84880986847 scopus 로고    scopus 로고
    • Individual differences in attention strategies during detection, fine discrimination, and coarse discrimination
    • Bridwell, D. A., Hecker, E. A., Serences, J. T. & Srinivasan, R. (2013), ‘Individual differences in attention strategies during detection, fine discrimination, and coarse discrimination’, Journal of Neurophysiology 110, 784–794.
    • (2013) Journal of Neurophysiology , vol.110 , pp. 784-794
    • Bridwell, D.A.1    Hecker, E.A.2    Serences, J.T.3    Srinivasan, R.4
  • 8
    • 80051815956 scopus 로고    scopus 로고
    • Bayesian versus orthodox statistics: Which side are you on?
    • Dienes, Z. (2011), ‘Bayesian versus orthodox statistics: Which side are you on?’, Perspectives on Psychological Science 6, 274–290.
    • (2011) Perspectives on Psychological Science , vol.6 , pp. 274-290
    • Dienes, Z.1
  • 10
    • 26444433586 scopus 로고
    • Bayesian statistical inference for psychological research
    • Edwards, W., Lindman, H. & Savage, L. J. (1963), ‘Bayesian statistical inference for psychological research’, Psychological Review 70, 193–242.
    • (1963) Psychological Review , vol.70 , pp. 193-242
    • Edwards, W.1    Lindman, H.2    Savage, L.J.3
  • 11
    • 0001178202 scopus 로고
    • A language and program for complex Bayesian modelling
    • Gilks, W. R., Thomas, A. & Spiegelhalter, D. J. (1994), ‘A language and program for complex Bayesian modelling’, The Statistician 43, 169–177.
    • (1994) The Statistician , vol.43 , pp. 169-177
    • Gilks, W.R.1    Thomas, A.2    Spiegelhalter, D.J.3
  • 12
  • 16
    • 4043129651 scopus 로고    scopus 로고
    • Graphical models
    • Jordan, M. I. (2004), ‘Graphical models’, Statistical Science 19, 140–155.
    • (2004) Statistical Science , vol.19 , pp. 140-155
    • Jordan, M.I.1
  • 17
    • 70649111792 scopus 로고    scopus 로고
    • Probabilistic Graphical Models: Principles and Techniques
    • Koller, D. & Friedman, N. (2009), Probabilistic Graphical Models: Principles and Techniques, MIT press, Cambridge, MA.
    • (2009) MIT Press, Cambridge, MA
    • Koller, D.1    Friedman, N.2
  • 19
    • 84978893726 scopus 로고    scopus 로고
    • Doing Bayesian Data Analysis: A Tutorial with R and BUGS
    • Kruschke, J. K. (2010a), Doing Bayesian Data Analysis: A Tutorial with R and BUGS, Academic Press, Burlington, MA.
    • (2010) Academic Press, Burlington, MA
    • Kruschke, J.K.1
  • 20
    • 77954029057 scopus 로고    scopus 로고
    • What to believe: Bayesian methods for data analysis
    • Kruschke, J. K. (2010b), ‘What to believe: Bayesian methods for data analysis’, Trends in Cognitive Science 14, 293–300.
    • (2010) Trends in Cognitive Science , vol.14 , pp. 293-300
    • Kruschke, J.K.1
  • 22
    • 84873827979 scopus 로고    scopus 로고
    • The time has come: Bayesian methods for data analysis in the organizational sciences
    • Kruschke, J. K., Aguinis, H. & Joo, H. (2012), ‘The time has come: Bayesian methods for data analysis in the organizational sciences’, Organizational Research Methods 15, 722–752.
    • (2012) Organizational Research Methods , vol.15 , pp. 722-752
    • Kruschke, J.K.1    Aguinis, H.2    Joo, H.3
  • 23
    • 50849109367 scopus 로고    scopus 로고
    • Three case studies in the Bayesian analysis of cognitive models
    • Lee, M. D. (2008), ‘Three case studies in the Bayesian analysis of cognitive models’, Psychonomic Bulletin and Review 15, 1–15.
    • (2008) Psychonomic Bulletin and Review , vol.15 , pp. 1-15
    • Lee, M.D.1
  • 24
    • 79551627798 scopus 로고    scopus 로고
    • How cognitive modeling can benefit from hierarchical Bayesian models
    • Lee, M. D. (2011), ‘How cognitive modeling can benefit from hierarchical Bayesian models’, Journal of Mathematical Psychology 55, 1–7.
    • (2011) Journal of Mathematical Psychology , vol.55 , pp. 1-7
    • Lee, M.D.1
  • 25
    • 84855237710 scopus 로고    scopus 로고
    • Using hierarchical Bayesian methods to examine the tools of decision-making
    • Lee, M. D. & Newell, B. R. (2011), ‘Using hierarchical Bayesian methods to examine the tools of decision-making’, Judgment and Decision Making 6, 832–842.
    • (2011) Judgment and Decision Making , vol.6 , pp. 832-842
    • Lee, M.D.1    Newell, B.R.2
  • 26
    • 23844530547 scopus 로고    scopus 로고
    • Postscript: Bayesian statistical inference in psychology: Comment on Trafimow (2003)
    • Lee, M. D. & Wagenmakers, E.-J. (2005), ‘Postscript: Bayesian statistical inference in psychology: Comment on Trafimow (2003)’, Psychological Review 112(3), 662–668.
    • (2005) Psychological Review , vol.112 , Issue.3 , pp. 662-668
    • Lee, M.D.1    Wagenmakers, E.-J.2
  • 29
    • 0006407254 scopus 로고    scopus 로고
    • A Bayesian modelling framework: Concepts, structure, and extensibility
    • Lunn, D. J., Thomas, A., Best, N. & Spiegelhalter, D. (2000), ‘A Bayesian modelling framework: Concepts, structure, and extensibility’, Statistics and Computing 10, 325–337.
    • (2000) Statistics and Computing , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 31
    • 0022686961 scopus 로고
    • Attention, similarity, and the identification– categorization relationship
    • Nosofsky, R. M. (1986), ‘Attention, similarity, and the identification– categorization relationship’, Journal of Experimental Psychology: General 115, 39–57.
    • (1986) Journal of Experimental Psychology: General , vol.115 , pp. 39-57
    • Nosofsky, R.M.1
  • 32
    • 84881108734 scopus 로고    scopus 로고
    • A probabilistic clustering theory of the organization of visual short-term memory
    • Orhan, A. E. & Jacobs, R. A. (2013), ‘A probabilistic clustering theory of the organization of visual short-term memory’, Psychological Review 120, 297–328.
    • (2013) Psychological Review , vol.120 , pp. 297-328
    • Orhan, A.E.1    Jacobs, R.A.2
  • 33
    • 77649325496 scopus 로고    scopus 로고
    • Causal inference in statistics: An overview
    • Pearl, J. (2009), ‘Causal inference in statistics: An overview’, Statistics Surveys 3, 96–146.
    • (2009) Statistics Surveys , vol.3 , pp. 96-146
    • Pearl, J.1
  • 34
    • 84921520950 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing
    • ISBN 3-900051-07-0
    • R Development Core Team (2013), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org
    • (2013) Vienna, Austria
    • Development Core Team, R.1
  • 35
    • 84881098885 scopus 로고    scopus 로고
    • Testing adaptive toolbox models: A Bayesian hierarchical approach
    • Scheibehenne, B., Rieskamp, J. & Wagenmakers, E.J. (2013), ‘Testing adaptive toolbox models: A Bayesian hierarchical approach’, Psychological Review 120, 39–64.
    • (2013) Psychological Review , vol.120 , pp. 39-64
    • Scheibehenne, B.1    Rieskamp, J.2    Wagenmakers, E.J.3
  • 37
    • 34250926052 scopus 로고
    • The analysis of proximities: Multidimensional scaling with an unknown distance function. I
    • Shepard, R. N. (1962), ‘The analysis of proximities: Multidimensional scaling with an unknown distance function. I’, Psychometrika 27(2), 125–140.
    • (1962) Psychometrika , vol.27 , Issue.2 , pp. 125-140
    • Shepard, R.N.1
  • 38
    • 0042021603 scopus 로고
    • Multidimensional scaling, tree-fitting, and clustering
    • Shepard, R. N. (1980), ‘Multidimensional scaling, tree-fitting, and clustering’, Science 210, 390–398.
    • (1980) Science , vol.210 , pp. 390-398
    • Shepard, R.N.1
  • 40
    • 0002750297 scopus 로고
    • A cognitive theory of graphical and linguistic reasoning: Logic and implementation
    • Stenning, K. & Oberlander, J. (1995), ‘A cognitive theory of graphical and linguistic reasoning: Logic and implementation’, Cognitive Science 19(1), 97–140.
    • (1995) Cognitive Science , vol.19 , Issue.1 , pp. 97-140
    • Stenning, K.1    Oberlander, J.2
  • 41
  • 42
    • 84908360851 scopus 로고    scopus 로고
    • A hierarchical Bayesian modeling approach to searching and stopping in multi-attribute judgment
    • van Ravenzwaaij, D., Moore, C. P., Lee, M. D. & Newell, B. R. (2014), ‘A hierarchical Bayesian modeling approach to searching and stopping in multi-attribute judgment’, Cognitive Science 38, 1384–1405.
    • (2014) Cognitive Science , vol.38 , pp. 1384-1405
    • Van Ravenzwaaij, D.1    Moore, C.P.2    Lee, M.D.3    Newell, B.R.4
  • 43
    • 37349085481 scopus 로고    scopus 로고
    • A practical solution to the pervasive problems of p values
    • Wagenmakers, E. (2007), ‘A practical solution to the pervasive problems of p values’, Psychonomic Bulletin and Review 14, 779–804.
    • (2007) Psychonomic Bulletin and Review , vol.14 , pp. 779-804
    • Wagenmakers, E.1
  • 44
    • 0028397580 scopus 로고
    • Implications of graphics enhancements for the visualization of scientific data: Dimensional integrality, stereopsis, motion, and mesh
    • Wickens, C. D., Merwin, D. H. & Lin, E. L. (1994), ‘Implications of graphics enhancements for the visualization of scientific data: Dimensional integrality, stereopsis, motion, and mesh’, Human Factors 36(1), 44–61
    • (1994) Human Factors , vol.36 , Issue.1 , pp. 44-61
    • Wickens, C.D.1    Merwin, D.H.2    Lin, E.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.