-
1
-
-
39749187284
-
Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): Multifunctional proteins in cancer
-
Bellahcène A, Castronovo V, Ogbureke KU, Fisher LW and Fedarko NS: Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): Multifunctional proteins in cancer. Nat Rev Cancer 8: 212-226, 2008.
-
(2008)
Nat Rev Cancer
, vol.8
, pp. 212-226
-
-
Bellahcène, A.1
Castronovo, V.2
Ogbureke, K.U.3
Fisher, L.W.4
Fedarko, N.S.5
-
2
-
-
79952338249
-
Suppressing tumourigenicity of prostate cancer cells by inhibiting osteopontin expression
-
Zhang Y, Forootan SS, Kamalian L, et al: Suppressing tumourigenicity of prostate cancer cells by inhibiting osteopontin expression. Int J Oncol 38: 1083-1091, 2011.
-
(2011)
Int J Oncol
, vol.38
, pp. 1083-1091
-
-
Zhang, Y.1
Forootan, S.S.2
Kamalian, L.3
-
3
-
-
80053101541
-
Effects of osteopontin downregulation on the growth of prostate cancer PC-3 cells
-
Zheng J, Hou ZB and Jiao NL: Effects of osteopontin downregulation on the growth of prostate cancer PC-3 cells. Mol Med Rep 4: 1225-1231, 2011.
-
(2011)
Mol Med Rep
, vol.4
, pp. 1225-1231
-
-
Zheng, J.1
Hou, Z.B.2
Jiao, N.L.3
-
4
-
-
33645743036
-
An osteopontin splice variant induces anchorage independence in human breast cancer cells
-
He B, Mirza M and Weber GF: An osteopontin splice variant induces anchorage independence in human breast cancer cells. Oncogene 25: 2192-2202, 2006.
-
(2006)
Oncogene
, vol.25
, pp. 2192-2202
-
-
He, B.1
Mirza, M.2
Weber, G.F.3
-
5
-
-
84873523452
-
Human osteopontin splicing isoforms: Known roles, potential clinical applications and activated signaling pathways
-
Gimba ER and Tilli TM: Human osteopontin splicing isoforms: Known roles, potential clinical applications and activated signaling pathways. Cancer Lett 331: 11-17, 2013.
-
(2013)
Cancer Lett
, vol.331
, pp. 11-17
-
-
Gimba, E.R.1
Tilli, T.M.2
-
6
-
-
78650846774
-
Osteopontin plasma level does not detect prostate cancer in patients referred for diagnostic prostate biopsy
-
Puzone R, Paleari L, Montefiore F, et al: Osteopontin plasma level does not detect prostate cancer in patients referred for diagnostic prostate biopsy. Int J Biol Markers 25: 200-206, 2010.
-
(2010)
Int J Biol Markers
, vol.25
, pp. 200-206
-
-
Puzone, R.1
Paleari, L.2
Montefiore, F.3
-
7
-
-
84865434420
-
Plasma osteopontin as a biomarker of prostate cancer aggression: Relationship to risk category and treatment response
-
Thoms JW, Dal Pra A, Anborgh PH, et al: Plasma osteopontin as a biomarker of prostate cancer aggression: Relationship to risk category and treatment response. Br J Cancer 107: 840-846, 2012.
-
(2012)
Br J Cancer
, vol.107
, pp. 840-846
-
-
Thoms, J.W.1
Dal Pra, A.2
Anborgh, P.H.3
-
8
-
-
77956442992
-
Osteopontin is a marker for cancer aggressiveness and patient survival
-
Weber GF, Lett GS and Haubein NC: Osteopontin is a marker for cancer aggressiveness and patient survival. Br J Cancer 103: 861-869, 2010.
-
(2010)
Br J Cancer
, vol.103
, pp. 861-869
-
-
Weber, G.F.1
Lett, G.S.2
Haubein, N.C.3
-
9
-
-
78651376714
-
Categorical meta-analysis of Osteopontin as a clinical cancer marker
-
Weber GF, Lett GS and Haubein NC: Categorical meta-analysis of Osteopontin as a clinical cancer marker. Oncol Rep 25: 433-441, 2011.
-
(2011)
Oncol Rep
, vol.25
, pp. 433-441
-
-
Weber, G.F.1
Lett, G.S.2
Haubein, N.C.3
-
10
-
-
84867088778
-
Both osteopontin-c and osteopontin-b splicing isoforms exert pro-tumorigenic roles in prostate cancer cells
-
Tilli TM, Mello KD, Ferreira LB, et al: Both osteopontin-c and osteopontin-b splicing isoforms exert pro-tumorigenic roles in prostate cancer cells. Prostate 72: 1688-1699, 2012.
-
(2012)
Prostate
, vol.72
, pp. 1688-1699
-
-
Tilli, T.M.1
Mello, K.D.2
Ferreira, L.B.3
-
11
-
-
80155135272
-
Expression analysis of osteopontin mRNA splice variants in prostate cancer and benign prostatic hyperplasia
-
Tilli TM, Thuler LC, Matos AR, et al: Expression analysis of osteopontin mRNA splice variants in prostate cancer and benign prostatic hyperplasia. Exp Mol Pathol 92: 13-19, 2012.
-
(2012)
Exp Mol Pathol
, vol.92
, pp. 13-19
-
-
Tilli, T.M.1
Thuler, L.C.2
Matos, A.R.3
-
12
-
-
84868660527
-
Androgen-sensitive microsomal signaling networks coupled to the proliferation and differentiation of human prostate cancer cells
-
Martinez HD, Hsiao JJ, Jasavala RJ, Hinkson IV, Eng JK and Wright ME: Androgen-sensitive microsomal signaling networks coupled to the proliferation and differentiation of human prostate cancer cells. Genes Cancer 2: 956-978, 2011.
-
(2011)
Genes Cancer
, vol.2
, pp. 956-978
-
-
Martinez, H.D.1
Hsiao, J.J.2
Jasavala, R.J.3
Hinkson, I.V.4
Eng, J.K.5
Wright, M.E.6
-
13
-
-
79551646237
-
Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells
-
Takayama K, Tsutsumi S, Katayama S, et al: Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Oncogene 30: 619-630, 2011.
-
(2011)
Oncogene
, vol.30
, pp. 619-630
-
-
Takayama, K.1
Tsutsumi, S.2
Katayama, S.3
-
14
-
-
79953679256
-
Androgen-induced PSA expression requires not only activation of AR but also endogenous IGF-I or IGF-I/PI3K/Akt signaling in human prostate cancer epithelial cells
-
Liu X, Choi RY, Jawad SM and Arnold JT: Androgen-induced PSA expression requires not only activation of AR but also endogenous IGF-I or IGF-I/PI3K/Akt signaling in human prostate cancer epithelial cells. Prostate 71: 766-777, 2011.
-
(2011)
Prostate
, vol.71
, pp. 766-777
-
-
Liu, X.1
Choi, R.Y.2
Jawad, S.M.3
Arnold, J.T.4
-
15
-
-
84879478480
-
Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer
-
Bitting RL and Armstrong AJ: Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocr Relat Cancer 20: R83-R99, 2013.
-
(2013)
Endocr Relat Cancer
, vol.20
, pp. R83-R99
-
-
Bitting, R.L.1
Armstrong, A.J.2
-
16
-
-
77952972709
-
Effects of the ErbB1/ErbB2 kinase inhibitor GW2974 on androgen-independent prostate cancer PC-3 cell line growth and NSE, chromogranin A and osteopontin content
-
Terracciano D, Mazzarella C, Di Carlo A, et al: Effects of the ErbB1/ErbB2 kinase inhibitor GW2974 on androgen-independent prostate cancer PC-3 cell line growth and NSE, chromogranin A and osteopontin content. Oncol Rep 24: 213-217, 2010.
-
(2010)
Oncol Rep
, vol.24
, pp. 213-217
-
-
Terracciano, D.1
Mazzarella, C.2
Di Carlo, A.3
-
17
-
-
84879604525
-
Targeting the adrenal gland in castration-resistant prostate cancer: A case for orteronel, a selective CYP-17 17,20-lyase inhibitor
-
Zhu H and Garcia JA: Targeting the adrenal gland in castration-resistant prostate cancer: A case for orteronel, a selective CYP-17 17,20-lyase inhibitor. Curr Oncol Rep 15: 105-112, 2013.
-
(2013)
Curr Oncol Rep
, vol.15
, pp. 105-112
-
-
Zhu, H.1
Garcia, J.A.2
-
18
-
-
78449263437
-
Stromal activation associated with development of prostate cancer in prostate-targeted fibroblast growth factor 8b transgenic mice
-
Elo TD, Valve EM, Seppänen JA, et al: Stromal activation associated with development of prostate cancer in prostate-targeted fibroblast growth factor 8b transgenic mice. Neoplasia 12: 915-927, 2010.
-
(2010)
Neoplasia
, vol.12
, pp. 915-927
-
-
Elo, T.D.1
Valve, E.M.2
Seppänen, J.A.3
-
19
-
-
1842631409
-
Osteopontin enhances the cell proliferation induced by the epidermal growth factor in human prostate cancer cells
-
Angelucci A, Festuccia C, Gravina GL, et al: Osteopontin enhances the cell proliferation induced by the epidermal growth factor in human prostate cancer cells. Prostate 59: 157-166, 2004.
-
(2004)
Prostate
, vol.59
, pp. 157-166
-
-
Angelucci, A.1
Festuccia, C.2
Gravina, G.L.3
-
20
-
-
84902057680
-
Changes in the transcriptional profile in response to overexpression of the osteopontin-c splice isoform in ovarian (OvCar-3) and prostate (PC-3) cancer cell lines
-
Tilli TM, Bellahcène A, Castronovo V and Gimba ER: Changes in the transcriptional profile in response to overexpression of the osteopontin-c splice isoform in ovarian (OvCar-3) and prostate (PC-3) cancer cell lines. BMC Cancer 14: 433, 2014.
-
(2014)
BMC Cancer
, vol.14
, pp. 433
-
-
Tilli, T.M.1
Bellahcène, A.2
Castronovo, V.3
Gimba, E.R.4
-
21
-
-
66149105948
-
Microarray coupled to quantitative RT-PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells
-
Ngan S, Stronach EA, Photiou A, Waxman J, Ali S and Buluwela L: Microarray coupled to quantitative RT-PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells. Oncogene 28: 2051-2063, 2009.
-
(2009)
Oncogene
, vol.28
, pp. 2051-2063
-
-
Ngan, S.1
Stronach, E.A.2
Photiou, A.3
Waxman, J.4
Ali, S.5
Buluwela, L.6
-
22
-
-
34249990979
-
Role of fibroblast growth factor 8 in growth and progression of hormonal cancer
-
Mattila MM and Härkönen PL: Role of fibroblast growth factor 8 in growth and progression of hormonal cancer. Cytokine Growth Factor Rev 18: 257-266, 2007.
-
(2007)
Cytokine Growth Factor Rev
, vol.18
, pp. 257-266
-
-
Mattila, M.M.1
Härkönen, P.L.2
-
23
-
-
84868266739
-
PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling
-
Ferreira LB, Palumbo A, de Mello KD, et al: PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer 12: 507, 2012.
-
(2012)
BMC Cancer
, vol.12
, pp. 507
-
-
Ferreira, L.B.1
Palumbo, A.2
De Mello, K.D.3
-
25
-
-
33646728919
-
GREB1 is a novel androgen-regulated gene required for prostate cancer growth
-
Rae JM, Johnson MD, Cordero KE, et al: GREB1 is a novel androgen-regulated gene required for prostate cancer growth. Prostate 66: 886-894, 2006.
-
(2006)
Prostate
, vol.66
, pp. 886-894
-
-
Rae, J.M.1
Johnson, M.D.2
Cordero, K.E.3
-
26
-
-
0242523062
-
Biology of prostate-specific antigen
-
Lilja H: Biology of prostate-specific antigen. Urology 62 (Suppl 1): 27-33, 2003.
-
(2003)
Urology
, vol.62
, Issue.1
, pp. 27-33
-
-
Lilja, H.1
-
27
-
-
77953196179
-
TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells
-
Chen YW, Lee MS, Lucht A, et al: TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells. Am J Pathol 176: 2986-2996, 2010.
-
(2010)
Am J Pathol
, vol.176
, pp. 2986-2996
-
-
Chen, Y.W.1
Lee, M.S.2
Lucht, A.3
-
28
-
-
39049150843
-
Role of the TMPRSS2-ERG gene fusion in prostate cancer
-
Tomlins SA, Laxman B, Varambally S, et al: Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10: 177-188, 2008.
-
(2008)
Neoplasia
, vol.10
, pp. 177-188
-
-
Tomlins, S.A.1
Laxman, B.2
Varambally, S.3
-
29
-
-
57649198310
-
A feedback loop between the androgen receptor and a NEDD4-binding protein, PMEPA1, in prostate cancer cells
-
Li H, Xu LL, Masuda K, et al: A feedback loop between the androgen receptor and a NEDD4-binding protein, PMEPA1, in prostate cancer cells. J Biol Chem 283: 28988-28995, 2008.
-
(2008)
J Biol Chem
, vol.283
, pp. 28988-28995
-
-
Li, H.1
Xu, L.L.2
Masuda, K.3
-
30
-
-
39349108726
-
A role for DNA methylation in regulating the growth suppressor PMEPA1 gene in prostate cancer
-
Richter E, Masuda K, Cook C, et al: A role for DNA methylation in regulating the growth suppressor PMEPA1 gene in prostate cancer. Epigenetics 2: 100-109, 2007.
-
(2007)
Epigenetics
, vol.2
, pp. 100-109
-
-
Richter, E.1
Masuda, K.2
Cook, C.3
-
32
-
-
0028069217
-
Regulation of prostate-specific antigen gene expression in LNCaP human prostatic carcinoma cells by growth, dihydrotestosterone, and extracellular matrix
-
Guo Y, Pili R and Passaniti A: Regulation of prostate-specific antigen gene expression in LNCaP human prostatic carcinoma cells by growth, dihydrotestosterone, and extracellular matrix. Prostate 24: 1-10, 1994.
-
(1994)
Prostate
, vol.24
, pp. 1-10
-
-
Guo, Y.1
Pili, R.2
Passaniti, A.3
-
33
-
-
0033033317
-
Effect of leuprorelin acetate on cell growth and prostate-specific antigen gene expression in human prostatic cancer cells
-
Sica G, Iacopino F, Settesoldi D and Zelano G: Effect of leuprorelin acetate on cell growth and prostate-specific antigen gene expression in human prostatic cancer cells. Eur Urol 35 (Suppl 1): 2-8, 1999.
-
(1999)
Eur Urol
, vol.35
, Issue.1
, pp. 2-8
-
-
Sica, G.1
Iacopino, F.2
Settesoldi, D.3
Zelano, G.4
-
34
-
-
80053142159
-
Repression of androgen receptor transcription through the E2F1/DNMT1 axis
-
Valdez CD, Davis JN, Odeh HM, et al: Repression of androgen receptor transcription through the E2F1/DNMT1 axis. PloS One 6: 25187, 2011.
-
(2011)
Plos One
, vol.6
-
-
Valdez, C.D.1
Davis, J.N.2
Odeh, H.M.3
-
35
-
-
79960979238
-
Increased androgen receptor transcription: A cause of castration-resistant prostate cancer and a possible therapeutic target
-
Shiota M, Yokomizo A and Naito S: Increased androgen receptor transcription: A cause of castration-resistant prostate cancer and a possible therapeutic target. J Mol Endocrinol 47: R25-R41, 2011.
-
(2011)
J Mol Endocrinol
, vol.47
, pp. R25-R41
-
-
Shiota, M.1
Yokomizo, A.2
Naito, S.3
-
36
-
-
84881032185
-
Plk1-dependent microtubule dynamics promotes androgen receptor signaling in prostate cancer
-
Hou X, Li Z, Huang W, et al: Plk1-dependent microtubule dynamics promotes androgen receptor signaling in prostate cancer. Prostate 73: 1352-1363, 2013.
-
(2013)
Prostate
, vol.73
, pp. 1352-1363
-
-
Hou, X.1
Li, Z.2
Huang, W.3
-
37
-
-
84875333536
-
ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients
-
Baena E, Shao Z, Linn DE, et al: ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev 27: 683-698, 2013.
-
(2013)
Genes Dev
, vol.27
, pp. 683-698
-
-
Baena, E.1
Shao, Z.2
Linn, D.E.3
-
38
-
-
84876546233
-
The ETS domain transcription factor ELK1 directs a critical component of growth signaling by the androgen receptor in prostate cancer cells
-
Patki M, Chari V, Sivakumaran S, Gonit M, Trumbly R and Ratnam M: The ETS domain transcription factor ELK1 directs a critical component of growth signaling by the androgen receptor in prostate cancer cells. J Biol Chem 288: 11047-11065, 2013.
-
(2013)
J Biol Chem
, vol.288
, pp. 11047-11065
-
-
Patki, M.1
Chari, V.2
Sivakumaran, S.3
Gonit, M.4
Trumbly, R.5
Ratnam, M.6
-
39
-
-
68049117221
-
Interleukin-6 regulates androgen synthesis in prostate cancer cells
-
Chun JY, Nadiminty N, Dutt S, et al: Interleukin-6 regulates androgen synthesis in prostate cancer cells. Clin Cancer Res 15: 4815-4822, 2009.
-
(2009)
Clin Cancer Res
, vol.15
, pp. 4815-4822
-
-
Chun, J.Y.1
Nadiminty, N.2
Dutt, S.3
|