메뉴 건너뛰기




Volumn 9244, Issue , 2014, Pages

Two-stage subpixel impervious surface coverage estimation: Comparing classification and regression trees and artificial neural networks

Author keywords

Artificial neural networks; Classification and regression trees; Dobczyce Reservoir; Impervious surfaces; Landsat TM; Subpixel classification

Indexed keywords

ARTIFICIAL INTELLIGENCE; CATCHMENTS; DECISION TREES; FORESTRY; LEARNING ALGORITHMS; LEARNING SYSTEMS; MAPS; MEAN SQUARE ERROR; NEURAL NETWORKS; PIXELS; RANDOM ERRORS; REGRESSION ANALYSIS; REMOTE SENSING;

EID: 84923039381     PISSN: 0277786X     EISSN: 1996756X     Source Type: Conference Proceeding    
DOI: 10.1117/12.2067308     Document Type: Conference Paper
Times cited : (4)

References (31)
  • 1
    • 84855458471 scopus 로고    scopus 로고
    • Remote sensing of impervious surface in the urban areas: Requiremants, methods and trends
    • Weng, Q., "Remote sensing of impervious surface in the urban areas: Requiremants, methods and trends", Remote Sensing of Environment 117, 34-49 (2012).
    • (2012) Remote Sensing of Environment , vol.117 , pp. 34-49
    • Weng, Q.1
  • 2
    • 33746998792 scopus 로고    scopus 로고
    • Impervious surface mapping and change monitoring using landsat remote sensing
    • unpaginated CD-ROM
    • Bauer, M.E., Heiner, N.J., Doyle, J.K., Yuan, F., "Impervious surface mapping and change monitoring using landsat remote sensing", ASPRS Annual Conference Proceedings (2004) (unpaginated CD-ROM)
    • (2004) ASPRS Annual Conference Proceedings
    • Bauer, M.E.1    Heiner, N.J.2    Doyle, J.K.3    Yuan, F.4
  • 3
    • 40849089440 scopus 로고    scopus 로고
    • Improving distributed runoff prediction in urbanized catchments with remote sensing based estimates of impervious surface cover
    • Chormanski, J., Van de Voorde, T., De Roeck, T., Batelaan, O., Canters, F., "Improving Distributed Runoff Prediction in Urbanized Catchments with Remote Sensing based Estimates of Impervious Surface Cover", Sensors 8, 910-932 (2008).
    • (2008) Sensors , vol.8 , pp. 910-932
    • Chormanski, J.1    Van De Voorde, T.2    De Roeck, T.3    Batelaan, O.4    Canters, F.5
  • 5
    • 40949084456 scopus 로고    scopus 로고
    • Quantification of impervious surface in the Snohomish Water Resources Inventory Area of Western Washington from 1972-2006
    • Powell, S.L., Cohen, W.B., Yang, Y., Pierce, J.D., Alberti, M., "Quantification of impervious surface in the Snohomish Water Resources Inventory Area of Western Washington from 1972-2006", Remote Sensing of Environment 112, 1895-1908 (2008).
    • (2008) Remote Sensing of Environment , vol.112 , pp. 1895-1908
    • Powell, S.L.1    Cohen, W.B.2    Yang, Y.3    Pierce, J.D.4    Alberti, M.5
  • 6
    • 48849109176 scopus 로고    scopus 로고
    • Medium spatial resolution satellite imagery for estimating and mapping urban impervious surfaces using LSMA and ANN
    • Weng, Q, Hu, X, "Medium Spatial Resolution Satellite Imagery for Estimating and Mapping Urban Impervious Surfaces Using LSMA and ANN", IEEE Transactions on Geoscience and Remote Sensing, 46(8), 2397-2402 (2008).
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.8 , pp. 2397-2402
    • Weng, Q.1    Hu, X.2
  • 7
    • 67849114029 scopus 로고    scopus 로고
    • Estimating impervious surface from medium spatial resolution imagery using the selforganizing map and multi-layer perceptron neural networks
    • Hu, X., Weng, Q., "Estimating impervious surface from medium spatial resolution imagery using the selforganizing map and multi-layer perceptron neural networks", Remote Sensing of Environment 113, 2089-2102 (2009).
    • (2009) Remote Sensing of Environment , vol.113 , pp. 2089-2102
    • Hu, X.1    Weng, Q.2
  • 10
    • 33744771976 scopus 로고    scopus 로고
    • Subpixel analysis of Landsat ETM+ using self-organizing map (SOM) neural networks for urban land cover characterization
    • Lee, S., and Lathrop, R. G., "Subpixel analysis of Landsat ETM+ using self-organizing map (SOM) neural networks for urban land cover characterization", Geoscience and Remote Sensing, IEEE Transactions on 44(6), 1642-1654 (2006).
    • (2006) Geoscience and Remote Sensing, IEEE Transactions on , vol.44 , Issue.6 , pp. 1642-1654
    • Lee, S.1    Lathrop, R.G.2
  • 11
    • 0033675168 scopus 로고    scopus 로고
    • Land-use classification of remotely sensed data using Kohonen self-organizing feature map neural networks
    • Ji, C.Y., "Land-use classification of remotely sensed data using Kohonen self-organizing feature map neural networks", Photogrammetric Engineering & Remote Sensing 66, 1451-1460 (2000).
    • (2000) Photogrammetric Engineering & Remote Sensing , vol.66 , pp. 1451-1460
    • Ji, C.Y.1
  • 12
    • 84923011538 scopus 로고    scopus 로고
    • Rulequest
    • RuleQuest Research Pty Ltd. (20 August
    • Rulequest, "Data Mining with Cubist", RuleQuest Research Pty Ltd. www.rulequest.com/cubist-info.html (20 August 2014).
    • (2014) Data Mining with Cubist
  • 14
    • 70350158748 scopus 로고    scopus 로고
    • Mapping impervious surfaces using classification and regression tree algorithm
    • Weng, Q., CRC Press Taylor & Francis Group, Boca Raton-London-New York
    • Xian, G., "Mapping Impervious Surfaces Using Classification and Regression Tree Algorithm" [in:] Weng, Q., [Remote Sensing of Impervious Surfaces], CRC Press, Taylor & Francis Group, Boca Raton-London-New York, 39-58 (2008).
    • (2008) Remote Sensing of Impervious Surfaces , pp. 39-58
    • Xian, G.1
  • 15
    • 84961613158 scopus 로고    scopus 로고
    • Sub-pixel classification of middle-resolution satellite images-evaluation of regression trees applicability to monitor impervious surfaces coverage
    • Drzewiecki, W., "Sub-pixel classification of middle-resolution satellite images-evaluation of regression trees applicability to monitor impervious surfaces coverage", Geomatics and Environmental Engineering 4(4), 61-75 (2010).
    • (2010) Geomatics and Environmental Engineering , vol.4 , Issue.4 , pp. 61-75
    • Drzewiecki, W.1
  • 16
    • 84922981653 scopus 로고    scopus 로고
    • Application of landsat imagery based vegetation indices to imperviousness index mapping
    • Drzewiecki, W., Osak, A., "Application of Landsat Imagery Based Vegetation Indices to Imperviousness Index Mapping", Geomatics and Environmental Engineering 3(4), 43-52 (2009).
    • (2009) Geomatics and Environmental Engineering , vol.3 , Issue.4 , pp. 43-52
    • Drzewiecki, W.1    Osak, A.2
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random forest
    • Breiman, L., "Random Forest", Machine Learning 45, 5-32 (2001).
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 18
    • 55349114714 scopus 로고    scopus 로고
    • Subpixel urban land cover estimation: Comparing cubist, random forest and support vector regression
    • Walton, J. T., "Subpixel Urban Land Cover Estimation: Comparing Cubist, Random Forest and Support Vector Regression", Photogrammetric Engineering & Remote Sensing 75(10), 1213-1222 (2008).
    • (2008) Photogrammetric Engineering & Remote Sensing , vol.75 , Issue.10 , pp. 1213-1222
    • Walton, J.T.1
  • 19
    • 84885900255 scopus 로고    scopus 로고
    • The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques
    • Deng, Ch. Wu, Ch., "The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques", ISPRS Journal of Photogrammetry and Remote Sensing 86, 100-110 (2013).
    • (2013) ISPRS Journal of Photogrammetry and Remote Sensing , vol.86 , pp. 100-110
    • Deng, C.1    Wu, C.2
  • 20
    • 84860601047 scopus 로고    scopus 로고
    • Comparison of support vector machine, neural network and CART algorithm for the land-cover classification using limited training data points
    • Shao, Y., Lunetta, R. S., "Comparison of support vector machine, neural network and CART algorithm for the land-cover classification using limited training data points", ISPRS J. Photogramm 70, 78-87 (2012).
    • (2012) ISPRS J. Photogramm , vol.70 , pp. 78-87
    • Shao, Y.1    Lunetta, R.S.2
  • 21
    • 0346245214 scopus 로고    scopus 로고
    • The use of backpropagating artificial neural networks in land cover classification
    • Kavzoglu, T, Mather, P. M., "The use of backpropagating artificial neural networks in land cover classification", International Journal of Remote Sensing, 24(23), 4907-4938 (2003).
    • (2003) International Journal of Remote Sensing , vol.24 , Issue.23 , pp. 4907-4938
    • Kavzoglu, T.1    Mather, P.M.2
  • 22
    • 25844488665 scopus 로고    scopus 로고
    • Multi-level land cover mapping of the Twin Cities (Minnesota) metropolitan area with multi-seasonal Landsat TM/ETM+ data
    • Yuan, F., Bauer, M. E., Heinert, N. J., Holden, G. R., "Multi-level land cover mapping of the Twin Cities (Minnesota) metropolitan area with multi-seasonal Landsat TM/ETM+ data", Geocarto International, 20(2), 5-13 (2005).
    • (2005) Geocarto International , vol.20 , Issue.2 , pp. 5-13
    • Yuan, F.1    Bauer, M.E.2    Heinert, N.J.3    Holden, G.R.4
  • 23
    • 33747136902 scopus 로고    scopus 로고
    • Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery
    • Xu, H., "Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery", International Journal of Remote Sensing 27(14), 3025-2033 (2006).
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.14 , pp. 3025-2033
    • Xu, H.1
  • 24
    • 84867025669 scopus 로고    scopus 로고
    • BCI: A biophysical composition index for remote sensing of urban environments
    • Deng, Ch., Wu, Ch., "BCI: A biophysical composition index for remote sensing of urban environments", Remote Sensing of Environment 127, 247-259 (2012).
    • (2012) Remote Sensing of Environment , vol.127 , pp. 247-259
    • Deng, C.1    Wu, C.2
  • 25
    • 84922998955 scopus 로고    scopus 로고
    • Rozpoznanie form pokrycia i uzytkowania ziemi na zdjeciu satelitarnym Landsat ETM+ metoda klasyfikacji obiektowej
    • Lewinski, S., "Rozpoznanie form pokrycia i uzytkowania ziemi na zdjeciu satelitarnym Landsat ETM+ metoda klasyfikacji obiektowej", Roczniki Geometyki 4( 3), 139-150 (2006).
    • (2006) Roczniki Geometyki , vol.4 , Issue.3 , pp. 139-150
    • Lewinski, S.1
  • 28
    • 0032983160 scopus 로고    scopus 로고
    • On the momentum term in gradient descent learning algorithms
    • Qian, N., "On the momentum term in gradient descent learning algorithms", Neural networks 12(1), 145-151 (1999).
    • (1999) Neural Networks , vol.12 , Issue.1 , pp. 145-151
    • Qian, N.1
  • 31
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs, R. A., "Increased rates of convergence through learning rate adaptation", Neural networks 1(4), 295-307 (1988).
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 295-307
    • Jacobs, R.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.