메뉴 건너뛰기




Volumn 83, Issue 3, 2015, Pages 958-965

CX3CR1 Is dispensable for control of mucosal Candida albicans infections in mice and humans

Author keywords

[No Author keywords available]

Indexed keywords

CHEMOKINE RECEPTOR CX3CR1; CHEMOKINE RECEPTOR CXCR4; CXCL1 CHEMOKINE; CXCL2 CHEMOKINE; INTERLEUKIN 10; INTERLEUKIN 12P70; INTERLEUKIN 15; INTERLEUKIN 17; INTERLEUKIN 1BETA; INTERLEUKIN 2; INTERLEUKIN 22; INTERLEUKIN 23; INTERLEUKIN 23P19; INTERLEUKIN 4; INTERLEUKIN 6; MACROPHAGE INFLAMMATORY PROTEIN 1ALPHA; MACROPHAGE INFLAMMATORY PROTEIN 1BETA; MACROPHAGE INFLAMMATORY PROTEIN 3ALPHA; MONOCYTE CHEMOTACTIC PROTEIN 1; MONOCYTE CHEMOTACTIC PROTEIN 3; RANTES; CHEMOKINE RECEPTOR; CX3CR1 PROTEIN, HUMAN; IL17A PROTEIN, HUMAN; INTERLEUKIN DERIVATIVE; INTERLEUKIN-22;

EID: 84922980802     PISSN: 00199567     EISSN: 10985522     Source Type: Journal    
DOI: 10.1128/IAI.02604-14     Document Type: Article
Times cited : (30)

References (49)
  • 1
    • 0036903056 scopus 로고    scopus 로고
    • Mucosal candidiasis
    • Vazquez JA, Sobel JD. 2002. Mucosal candidiasis. Infect Dis Clin North Am 16:793-820. http://dx.doi.org/10.1016/S0891-5520(02)00042-9.
    • (2002) Infect Dis Clin North Am , vol.16 , pp. 793-820
    • Vazquez, J.A.1    Sobel, J.D.2
  • 2
    • 0347809620 scopus 로고    scopus 로고
    • Immunopathogenesis of recurrent vulvovaginal candidiasis
    • Fidel PL, Jr, Sobel JD. 1996. Immunopathogenesis of recurrent vulvovaginal candidiasis. Clin Microbiol Rev 9:335-348.
    • (1996) Clin Microbiol Rev , vol.9 , pp. 335-348
    • Fidel, P.L.1    Sobel, J.D.2
  • 4
    • 5644233700 scopus 로고    scopus 로고
    • Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection
    • de Repentigny L, Lewandowski D, Jolicoeur P. 2004. Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev 17:729-759. http://dx.doi.org/10.1128/CMR.17.4.729-759.2004.
    • (2004) Clin Microbiol Rev , vol.17 , pp. 729-759
    • de Repentigny, L.1    Lewandowski, D.2    Jolicoeur, P.3
  • 5
    • 0031454303 scopus 로고    scopus 로고
    • Vaginitis
    • Sobel JD. 1997. Vaginitis. N Engl J Med 337:1896-1903. http://dx.doi.org/10.1056/NEJM199712253372607.
    • (1997) N Engl J Med , vol.337 , pp. 1896-1903
    • Sobel, J.D.1
  • 6
    • 0034128410 scopus 로고    scopus 로고
    • Candida vaginitis: self-reported incidence and associated costs
    • Foxman B, Barlow R, D'Arcy H, Gillespie B, Sobel JD. 2000. Candida vaginitis: self-reported incidence and associated costs. Sex Transm Dis 27:230-235. http://dx.doi.org/10.1097/00007435-200004000-00009.
    • (2000) Sex Transm Dis , vol.27 , pp. 230-235
    • Foxman, B.1    Barlow, R.2    D'Arcy, H.3    Gillespie, B.4    Sobel, J.D.5
  • 11
    • 84862774469 scopus 로고    scopus 로고
    • Genetic susceptibility to fungal infections in humans
    • Lionakis MS. 2012. Genetic susceptibility to fungal infections in humans. Curr Fungal Infect Rep 6:11-22. http://dx.doi.org/10.1007/s12281-011-0076-4.
    • (2012) Curr Fungal Infect Rep , vol.6 , pp. 11-22
    • Lionakis, M.S.1
  • 15
    • 84872171847 scopus 로고    scopus 로고
    • Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection
    • Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S. 2013. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol 190:521-525. http://dx.doi.org/10.4049/jimmunol.1202924.
    • (2013) J Immunol , vol.190 , pp. 521-525
    • Gladiator, A.1    Wangler, N.2    Trautwein-Weidner, K.3    LeibundGut-Landmann, S.4
  • 18
    • 84874082076 scopus 로고    scopus 로고
    • CX(3)CR1(+) macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium
    • Manta C, Heupel E, Radulovic K, Rossini V, Garbi N, Riedel CU, Niess JH. 2013. CX(3)CR1(+) macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium. Mucosal Immunol 6:177-188. http://dx.doi.org/10.1038/mi.2012.61.
    • (2013) Mucosal Immunol , vol.6 , pp. 177-188
    • Manta, C.1    Heupel, E.2    Radulovic, K.3    Rossini, V.4    Garbi, N.5    Riedel, C.U.6    Niess, J.H.7
  • 20
    • 84055200171 scopus 로고    scopus 로고
    • CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice
    • Medina-Contreras O, Geem D, Laur O, Williams IR, Lira SA, Nusrat A, Parkos CA, Denning TL. 2011. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J Clin Invest 121:4787-4795. http://dx.doi.org/10.1172/JCI59150.
    • (2011) J Clin Invest , vol.121 , pp. 4787-4795
    • Medina-Contreras, O.1    Geem, D.2    Laur, O.3    Williams, I.R.4    Lira, S.A.5    Nusrat, A.6    Parkos, C.A.7    Denning, T.L.8
  • 24
    • 0344683235 scopus 로고    scopus 로고
    • 8th ed. National Academies Press, Washington, DC
    • National Research Council. 2011. Guide for the care and use of laboratory animals, 8th ed. National Academies Press, Washington, DC.
    • (2011) Guide for the care and use of laboratory animals
  • 25
    • 34247125580 scopus 로고    scopus 로고
    • Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host-pathogen interactions
    • Rahman D, Mistry M, Thavaraj S, Challacombe SJ, Naglik JR. 2007. Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host-pathogen interactions. Microbes Infect 9:615-622. http://dx.doi.org/10.1016/j.micinf.2007.01.012.
    • (2007) Microbes Infect , vol.9 , pp. 615-622
    • Rahman, D.1    Mistry, M.2    Thavaraj, S.3    Challacombe, S.J.4    Naglik, J.R.5
  • 26
    • 84858129679 scopus 로고    scopus 로고
    • Mouse model of oropharyngeal candidiasis
    • Solis NV, Filler SG. 2012. Mouse model of oropharyngeal candidiasis. Nat Protoc 7:637-642. http://dx.doi.org/10.1038/nprot.2012.011.
    • (2012) Nat Protoc , vol.7 , pp. 637-642
    • Solis, N.V.1    Filler, S.G.2
  • 27
    • 40349102094 scopus 로고    scopus 로고
    • Mucosal damage and neutropenia are required for Candida albicans dissemination
    • Koh AY, Kohler JR, Coggshall KT, Van Rooijen N, Pier GB. 2008. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 4:e35. http://dx.doi.org/10.1371/journal.ppat.0040035.
    • (2008) PLoS Pathog , vol.4
    • Koh, A.Y.1    Kohler, J.R.2    Coggshall, K.T.3    Van Rooijen, N.4    Pier, G.B.5
  • 30
    • 84878391195 scopus 로고    scopus 로고
    • CARD9: at the intersection of mucosal and systemic antifungal immunity
    • Lionakis MS, Holland SM. 2013. CARD9: at the intersection of mucosal and systemic antifungal immunity. Blood 121:2377-2378. http://dx.doi.org/10.1182/blood-2013-01-480434.
    • (2013) Blood , vol.121 , pp. 2377-2378
    • Lionakis, M.S.1    Holland, S.M.2
  • 34
    • 0014559249 scopus 로고
    • Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection
    • Lehrer RI, Cline MJ. 1969. Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J Clin Invest 48:1478-1488. http://dx.doi.org/10.1172/JCI106114.
    • (1969) J Clin Invest , vol.48 , pp. 1478-1488
    • Lehrer, R.I.1    Cline, M.J.2
  • 37
    • 80855140152 scopus 로고    scopus 로고
    • Protective role of naturally occurring interleukin-17A-producing γδ T cells in the lung at the early stage of systemic candidiasis in mice
    • Dejima T, Shibata K, Yamada H, Hara H, Iwakura Y, Naito S, Yoshikai Y. 2011. Protective role of naturally occurring interleukin-17A-producing γδ T cells in the lung at the early stage of systemic candidiasis in mice. Infect Immun 79:4503-4510. http://dx.doi.org/10.1128/IAI.05799-11.
    • (2011) Infect Immun , vol.79 , pp. 4503-4510
    • Dejima, T.1    Shibata, K.2    Yamada, H.3    Hara, H.4    Iwakura, Y.5    Naito, S.6    Yoshikai, Y.7
  • 38
    • 79961169153 scopus 로고    scopus 로고
    • IL-17 signaling in host defense against Candida albicans
    • Gaffen SL, Hernandez-Santos N, Peterson AC. 2011. IL-17 signaling in host defense against Candida albicans. Immunol Res 50:181-187. http://dx.doi.org/10.1007/s12026-011-8226-x.
    • (2011) Immunol Res , vol.50 , pp. 181-187
    • Gaffen, S.L.1    Hernandez-Santos, N.2    Peterson, A.C.3
  • 39
    • 33748341711 scopus 로고    scopus 로고
    • Distinct roles for interleukin-12p40 and tumour necrosis factor in resistance to oral candidiasis defined by gene-targeting
    • Farah CS, Hu Y, Riminton S, Ashman RB. 2006. Distinct roles for interleukin-12p40 and tumour necrosis factor in resistance to oral candidiasis defined by gene-targeting. Oral Microbiol Immunol 21:252-255. http://dx.doi.org/10.1111/j.1399-302X.2006.00288.x.
    • (2006) Oral Microbiol Immunol , vol.21 , pp. 252-255
    • Farah, C.S.1    Hu, Y.2    Riminton, S.3    Ashman, R.B.4
  • 40
    • 0029913685 scopus 로고    scopus 로고
    • Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans
    • Romani L, Mencacci A, Cenci E, Spaccapelo R, Toniatti C, Puccetti P, Bistoni F, Poli V. 1996. Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans. J Exp Med 183:1345-1355. http://dx.doi.org/10.1084/jem.183.4.1345.
    • (1996) J Exp Med , vol.183 , pp. 1345-1355
    • Romani, L.1    Mencacci, A.2    Cenci, E.3    Spaccapelo, R.4    Toniatti, C.5    Puccetti, P.6    Bistoni, F.7    Poli, V.8
  • 41
    • 84892479849 scopus 로고    scopus 로고
    • IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells
    • Bär E, Whitney PG, Moor K, Reis e Sousa C, LeibundGut-Landmann S. 2014. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells. Immunity 40:117-127. http://dx.doi.org/10.1016/j.immuni.2013.12.002.
    • (2014) Immunity , vol.40 , pp. 117-127
    • Bär, E.1    Whitney, P.G.2    Moor, K.3    Reis e Sousa, C.4    LeibundGut-Landmann, S.5
  • 42
    • 0037963473 scopus 로고    scopus 로고
    • Blood monocytes consist of two principal subsets with distinct migratory properties
    • Geissmann F, Jung S, Littman DR. 2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71-82. http://dx.doi.org/10.1016/S1074-7613(03)00174-2.
    • (2003) Immunity , vol.19 , pp. 71-82
    • Geissmann, F.1    Jung, S.2    Littman, D.R.3
  • 43
    • 76249117469 scopus 로고    scopus 로고
    • Accumulation of CD11b+ lung dendritic cells in response to fungal infection results from the CCR2-mediated recruitment and differentiation of Ly-6Chigh monocytes
    • Osterholzer JJ, Chen GH, Olszewski MA, Curtis JL, Huffnagle GB, Toews GB. 2009. Accumulation of CD11b+ lung dendritic cells in response to fungal infection results from the CCR2-mediated recruitment and differentiation of Ly-6Chigh monocytes. J Immunol 183:8044-8053. http://dx.doi.org/10.4049/jimmunol.0902823.
    • (2009) J Immunol , vol.183 , pp. 8044-8053
    • Osterholzer, J.J.1    Chen, G.H.2    Olszewski, M.A.3    Curtis, J.L.4    Huffnagle, G.B.5    Toews, G.B.6
  • 44
    • 71749100858 scopus 로고    scopus 로고
    • Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection
    • Hohl TM, Rivera A, Lipuma L, Gallegos A, Shi C, Mack M, Pamer EG. 2009. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 6:470-481. http://dx.doi.org/10.1016/j.chom.2009.10.007.
    • (2009) Cell Host Microbe , vol.6 , pp. 470-481
    • Hohl, T.M.1    Rivera, A.2    Lipuma, L.3    Gallegos, A.4    Shi, C.5    Mack, M.6    Pamer, E.G.7
  • 46
    • 84859944388 scopus 로고    scopus 로고
    • Fungi subvert vaccine T cell priming at the respiratory mucosa by preventing chemokine-induced influx of inflammatory monocytes
    • Wüthrich M, Ersland K, Sullivan T, Galles K, Klein BS. 2012. Fungi subvert vaccine T cell priming at the respiratory mucosa by preventing chemokine-induced influx of inflammatory monocytes. Immunity 36: 680-692. http://dx.doi.org/10.1016/j.immuni.2012.02.015.
    • (2012) Immunity , vol.36 , pp. 680-692
    • Wüthrich, M.1    Ersland, K.2    Sullivan, T.3    Galles, K.4    Klein, B.S.5
  • 47
    • 84891365225 scopus 로고    scopus 로고
    • Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis
    • Ngo LY, Kasahara S, Kumasaka DK, Knoblaugh SE, Jhingran A, Hohl TM. 2014. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J Infect Dis 209:109-119. http://dx.doi.org/10.1093/infdis/jit413.
    • (2014) J Infect Dis , vol.209 , pp. 109-119
    • Ngo, L.Y.1    Kasahara, S.2    Kumasaka, D.K.3    Knoblaugh, S.E.4    Jhingran, A.5    Hohl, T.M.6
  • 48
    • 33748522728 scopus 로고    scopus 로고
    • Invasive candidiasis
    • Pappas PG. 2006. Invasive candidiasis. Infect Dis Clin North Am 20:485-506. http://dx.doi.org/10.1016/j.idc.2006.07.004.
    • (2006) Infect Dis Clin North Am , vol.20 , pp. 485-506
    • Pappas, P.G.1
  • 49
    • 80052703885 scopus 로고    scopus 로고
    • Mucosal immunity and Candida albicans infection
    • 346307
    • Moyes DL, Naglik JR. 2011. Mucosal immunity and Candida albicans infection. Clin Dev Immunol 2011:346307. http://dx.doi.org/10.1155/2011/346307.
    • (2011) Clin Dev Immunol , vol.2011
    • Moyes, D.L.1    Naglik, J.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.